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Who are we? Disclaimer 

A note from the trenches: "You know you have a large storage 
system when you get paged at 1 AM because you only have a 
few petabytes of storage left." – from Andrew Fikes’ (Principal 
Engineer, Google) faculty summit talk ` Storage Architecture 
and Challenges `, 2010. 

 
      

    We two never 
get such calls!! 

… and some ask/say: why do you care about efficient storage space utilization, it is so cheap ... 
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Outline 

• Distributed storage systems 
– Scale how much? Scale how? 
– From P2P to Data centers 

• Data storage & management 
– NoSQL systems 

• Detailed examples: Dynamo, GFS, … 

•  Erasure coding based efficient fault-tolerant storage 
– Background: RAID, (traditional) erasure codes 
– Codes tailor-made for storage 

• Detailed examples: Regenerating codes, Self-repairing codes, … 

• Appendix: MapReduce 

T
he “aging”  

state-of-the-art 
A

n em
erging  

trend …
 

Introduction NoSQL Codes for storage Appendix 
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What scale are we talking about? 

• Rather big … 

Introduction NoSQL Codes for storage Appendix 
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Big data 

• June 2011 EMC2 study 
– world’s data is more than doubling  

every 2 years 
• faster than Moore’s Law 

– 1.8 zettabytes of data to be created in 2011 

Big data:  
 - big problem? 
 - big opportunity? 

* http://www.emc.com/about/news/press/2011/20110628-01.htm 

Zetta: 1021 
 

Zettabyte: If you stored all of this data on 
DVDs, the stack would reach from the Earth 
to the moon and back. 

Introduction NoSQL Codes for storage Appendix 
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The data deluge: Some numbers 
• Facebook “currently” (in 2010) stores 

over 260 billion images, which translates 
to over 20 petabytes of data. Users upload 
one billion new photos (60 terabytes) each 
week and Facebook serves over one 
million images per second at peak. 
[Beaver  et al. in “Haystack” paper] 

• On “Saturday”, photo number four 
billion was uploaded to photo sharing site 
Flickr. This comes just five and a half 
months after the 3 billionth and nearly 18 
months after photo number two billion. – 
Mashable (13th October 2009） 

     [http://mashable.com/2009/10/12/flickr-4-
billion/] 

Introduction NoSQL Codes for storage Appendix 
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The data deluge: Some numbers 
• Caffeine lets us index web pages on an 

enormous scale. In fact, every second 
Caffeine processes hundreds of thousands 
of pages in parallel. If this were a pile of 
paper it would grow three miles taller 
every second. Caffeine takes up nearly 
100 million gigabytes of storage in one 
database and adds new information at a 
rate of hundreds of thousands of 
gigabytes per day. You would need 
625,000 of the largest iPods to store that 
much information; if these were stacked 
end-to-end they would go for more than 
40 miles. 

   
http://googleblog.blogspot.com/2010/06/o
ur-new-search-index-caffeine.html  

Introduction NoSQL Codes for storage Appendix 
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The data deluge: Some numbers 
Introduction NoSQL Codes for storage Appendix 
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Scale how? 

Scale up Scale out 

To scale horizontally (or scale out) means to 
add more nodes to a system, such as adding a new 

computer to a distributed software application* 

To scale vertically (or scale up) means to 
add resources to a single node in a system* 

* Definitions from Wikipedia 

Introduction NoSQL Codes for storage Appendix 
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Distribution is essential 

• Scaling up 
– May just not even be feasible 
– Even if feasible, it will be very expensive 
– What happens when “the” machine fails? 

• Scaling out => distributed storage 
– Distribution => added complexity and vulnerabilities  

• latency, consistency, faults, … 
• CAP theorem 

– Consistency, Availability, Partition tolerance – choose any two 
• but, not distributing is not a choice! 

 

 

Introduction NoSQL Codes for storage Appendix 
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Distributed Storage Systems 

• Different flavors of functionality 
– File level data storage: Network-attached storage 
– Block level data storage: Storage area network 
– Distributed databases 
– Caching/CDNs 
– … 

•  Different flavors of architecture 
– Centralized, decentralized/peer-to-peer, hybrid … 

• Different flavors of interfaces  
– depends on/constrains functionality 

Introduction NoSQL Codes for storage Appendix 
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Key-Value Stores 

• Popularized by distributed hash tables 
– Basic operations: Get, Put,  …  
– Easy to distribute (partition the key space) 

 

Introduction NoSQL Codes for storage Appendix 
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Distributed key-value store based storage 

• DHT itself as the storage layer 

DHT ID 
space 

DHT ID 
space 

• DHT as a directory service 

Introduction NoSQL Codes for storage Appendix 
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Wuala’s 3-tier architecture 

• Complete disentanglement 
of  indexing and storage 

• Many (encoded) fragments 
per object 
– Suitable for sharing very large 

but static files 
– Parallel download 

•  Piggy-backed, large  DHT 
routing states 
– So very few hops needed, 

gives high through-put 

1
5 

Source: Google tech talk on Wuala: http://www.youtube.com/watch?v=3xKZ4KGkQY8  

DHT 

Storage peers 

Wuala’s dedicated 
storage resource as 
a fall-back option 

Users 

Superpeers 

Introduction NoSQL Codes for storage Appendix 
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Wait a moment! 

• We are not here to talk about P2P systems, the title mentioned 
“on the cloud”! 
– Don’t panic! The fundamental things apply (even as time goes by …) 

Introduction NoSQL Codes for storage Appendix 
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But, what is the cloud? 

• At least, we can all agree 
– Cloud is something “big” and happening! 
– It’s all of these … 

• … and some more! 

SaaS 

PaaS 

IaaS 

%*$aaS 

Old 
wine 

Data 
center 

Systems of elephantine proportion needed 

Introduction NoSQL Codes for storage Appendix 
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NIST definition for cloud computing 

• Cloud computing is a model for enabling 
ubiquitous, convenient, on-demand network 
access to a shared pool of configurable 
computing resources (e.g., networks, servers, 
storage, applications, and services) that can be 
rapidly provisioned and released with minimal 
management effort or service provider 
interaction 

Introduction NoSQL Codes for storage Appendix 
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Two sides of the cloud coin 

• Outside view 
– A “single/exclusive” entity 

• Access through a “demilitarized zone” … 
• API based 
• Agnostic to multi-tenancy 

– Infinite/elastic resources 
• Pay per use, on-demand, …  

– Browser based access (often) 
• Anytime, anywhere, any device … 

 

Introduction NoSQL Codes for storage Appendix 
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Two sides of the cloud coin 

• Inside view 
– Pool of resources 

• In flux: New compute units joining, old ones retiring 
• Self-*: Load-balancing, fault-tolerance, auto-configuration, … 

– Multi-tenancy 
• Virtualization, transparent migration, …  

– Distributed file system, data-management, data processing 
• Google’s GFS, Amazon’s Dynamo, Facebook’s Cassandra,Yahoo!’s Pnuts 
• Map Reduce/Hadoop, Pig, Chubby, … 

Introduction NoSQL Codes for storage Appendix 
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The new stack 

Distributed File System (e.g., Key-Value store) 

NoSQL 
e.g., Map-Reduce, 
Hadoop, BigTable, 

Hbase, Cassandra … 

SQL Implementations 
e.g., PIG (relational 
algebra), HIVE, … 

 

Applications 

 Distributed Physical Infrastructure:  
Storage & Compute Nodes, Interconnect, … 

Reliable storage service 

Disclaimer: This “stack” is a personal “view”, and is not universal 

Introduction NoSQL Codes for storage Appendix 
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Data center 

 

Source of topology: http://www.cisco.com/en/US/docs/solutions/Enterprise/Data_Center/vmware/VMware.html 
Note: More recently, the trend is to deploy “Fat Tree” interconnects 

Introduction NoSQL Codes for storage Appendix 
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Server 

 
 

 

Capacity 

Gen 1  DC 
Collocation 

Rack  
          
 

Density  
and 
Sustainability 
 

Gen 2 
 

Containers 

Scalability 
Thousands of 
Servers  

Gen 3 Gen 4 (future) 
Modular Data Center 

Right Time to Market, 
Lower TCO (PUE) 

Scalable Data Centers 

 
Pre-Assembled 

Components 

Deployment Scale Unit 

Slide courtesy Roger Barga (Microsoft) from his P2P 2009 Keynote talk 

Data center design evolution 
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Amazon’s AWS: Availability zones 
Introduction NoSQL Codes for storage Appendix 
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Still, how to manage so much data and distribution??? 

Build physical infrastructure to store immense data … 
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The “why” decides the “what” & the “how” 

• Workload based design 
– One size does NOT fit all … 

Introduction NoSQL Codes for storage Appendix 
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Not Only SQL 

• Time tested RDBMS is  
– Neither always needed 
– Nor scales (out) 

• Various workload specific custom 
storage & data management solutions 
– NoSQL  

 

Introduction NoSQL Codes for storage Appendix 
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GFS, BigTable, MapReduce, … 
Dynamo 

HDFS, PNUTS, … 

Dryad, Azure, … 

Cassandra, Haystack, … 

Introduction NoSQL Codes for storage Appendix 
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In fact: Many varieties of NoSQL systems … 

• Document store 
• Graph 
• Key-value store  
• Multivalue databases 
• Object database 
• Tabular 
• Tuple store 
• … 

 

Introduction NoSQL Codes for storage Appendix 
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Amazon’s Key-Value Store: Dynamo 

Dynamo: Amazon’s Highly Available Key-Value Store 
Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan 

Kakulapati, Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubramanian, 
Peter Vosshall and Werner Vogels 

SOSP 2007 

Introduction NoSQL Codes for storage Appendix 
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Fast and furious 

• Latency sensitivity 
– Shopping Cart Service 

• 10s of millions of requests per day 
• Millions of checkouts each day 
• Hundreds of thousands of  

concurrent activities 

• Stringent SLAs for each service 
– 99.9th percentile < 300ms 
– Mean/std. dev. inadequate 

• One page request  
– 100s of services 

• Multiple service dependencies  
 

Introduction NoSQL Codes for storage Appendix 
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The show must go on 

• Extremely high availability 
– Down time => lost business 

• “customers should be able to view and 
add items to their shopping cart even if 
disks are failing, network routes are 
flapping, or data centers are being 
destroyed by tornados” 

• an infrastructure comprised of millions 
of components 
– tens of thousands of servers located across 

many data centers world-wide 
– a small but significant number of server and 

network components that are failing at any 
given time 

Introduction NoSQL Codes for storage Appendix 
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The show must go on 
• Infrastructure comprised of millions of components 

– tens of thousands of servers located across many data 
centers world-wide 

– a small but significant number of server and network 
components that are failing at any given time 

• Redundancy needed for fault tolerance 
– Trade-off: Availability is more important than consistency 

• An “always writeable” data store 
– Conflict resolution complexity at “reads” 

• Unlike most traditional data stores 
• Can be handled at clients (using application logic)  

– Data store provides some default fall-back option “last write wins” 
 

Introduction NoSQL Codes for storage Appendix 
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KISS: Keep it simple, Stupid! 

• Both stateless and stateful (needing 
persistent storage) services 

• Most services access/store data using  
“primary keys” 
– No need for complex queries 
– No operation span multiple data items 
– Relatively small objects (<1MB) 

• RDBMS is an overkill! 
– Also, difficult/impossible to scale-out 
– Needs much more expensive 

hardware/administration 

Introduction NoSQL Codes for storage Appendix 
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Other embraced design principles  

• Incremental scalability 
• Symmetric 

– Simpler system provisioning & maintenance  

•  Decentralized 
– Self-*, no single point of failure, … 

• Heterogeneity friendly  

Introduction NoSQL Codes for storage Appendix 
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Dynamo architecture: Many considerations 
Introduction NoSQL Codes for storage Appendix 
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Dynamo architecture: Interface 

•  get(key) 
– Locate object replicas associated with the key  
– Return object/list of objects, with context 

•  put(key, context, object) 
• Context encodes system metadata 

– E.g., version 

•  MD5[Caller key]  128 bit identifier 

Introduction NoSQL Codes for storage Appendix 
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Dynamo architecture: Data placement 

• Zero-hop DHT 
– Consistent hashing based data partitioning 
– All nodes know all other nodes 

• Multiple “tokens” per node 
– Virtual node instances 
– Easy to handle heterogeneity 
– Node departure/arrival 

• Load is distributed 

• Replication (configurable) 
– For any key: preference list 

• Ensure distinct physical nodes 
• Across multiple data centers 
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semantic 

Dynamo architecture: Data versioning 

syntactic 

• Many potential coordinators per key 
– Coordinators: Nodes handling reads/writes  

• Version: vector clocks 
• Reconciliation   

– Syntactic 
– Semantic 

 

Introduction NoSQL Codes for storage Appendix 
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• Symmetry 
– Client can send get/put requests for any key to any Dynamo node 

• Sloppy-quorum 
– First N healthy nodes in the preference list 
– R+W > N quorum  

• Upon receiving put() request 
– coordinator generates vector clock, writes locally  
– sends to N highest-ranked reachable nodes 
– W-1 acks implies a successful write 

• Upon receiving get() request 
– coordinator requests for all existing versions to N highest-ranked nodes 
– waits for R responses, gathers all versions, and sends all causally 

unrelated versions 

Dynamo architecture: Executing get()/put() 

object 
availability, 
consistency  

& 
 durability  
trade-offs 

Introduction NoSQL Codes for storage Appendix 
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Dynamo architecture: Other aspects 

• Hinted handoff: Always writeable 
• Gossip based  

– failure detection 
– membership information propagation 

• Buffered writes:  
– Writes stored in main memory buffer, periodically written to storage 
– Improves latency, risks durability 

Introduction NoSQL Codes for storage Appendix 
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Dynamo in December 2006 
Introduction NoSQL Codes for storage Appendix 
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Dynamo: Summary 
Introduction NoSQL Codes for storage Appendix 
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Distributed File System 

• Dynamo provides a bare-bone storage service  
– using the key-value data structure  
– how about something more sophisticated, i.e., a file system? 

GFS@ 
SOSP’03 

Dynamo@ 
SOSP’07 

Introduction NoSQL Codes for storage Appendix 
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GFS 

The Google File System 
Sanjay Ghemawat, Howard Gobioff and Shun-Tak Leung 

SOSP 2003 

Introduction NoSQL Codes for storage Appendix 
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The big fat Google computations 

• Throughput for bulk data processing in batches 
– High sustained bandwidth  is more important 

• Than low latency 

• Few million files 
– Mostly > 100 MB 

• Multi-GB files very common 
– Small files must be supported 

• But no need for optimization 
  
 

Introduction NoSQL Codes for storage Appendix 
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Workload is primarily two kinds of reads 

• Large streaming reads 
– 100s of KBs, > 1MB … 

• Small random reads 
 
 
 

• Successive operations from a client 
read contiguous region of a file 

• Applications can sort small reads to 
advance steadily through a file 
– To avoid going back & forth   

  
 

Introduction NoSQL Codes for storage Appendix 
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Many large sequential writes/appends … 

• Mainly when a file is being created 
– Once written, it is seldom modified 

• Small writes at arbitrary position needs to 
be supported 
– But do not have to be efficient! 

 
 

• Multiple clients that concurrently append 
– Producer-consumer queues, many-way 

merging 
• e.g., MapReduce operations 

– Needs atomicity 

Introduction NoSQL Codes for storage Appendix 
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KISS: Keep it simple, Stupid! 

• Basic operations  
– E.g., Not standard (POSIX) compliant 

• create, delete, open, close, read, write files 
• snapshot, record append  

Introduction NoSQL Codes for storage Appendix 
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GFS architecture 

• Single Master 
– Simplifies design 

• Can carry out sophisticated data placement and replication decisions using 
global knowledge 

– What about fault-tolerance, bottleneck, …? 

• Multiple chunk servers & multiple clients 
– Could be run on same machines 

 
 
 

• Note: HDFS (Hadoop™ Distributed File System) follows a 
similar architecture 
 

Introduction NoSQL Codes for storage Appendix 
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Files  Fixed-sized chunks 

• Global 64 bit uid for each chunk 
– Assigned by master at chunk creation 

• Chunkservers store chunks on local disks 
– As Linux files  
– Chunks replicated for reliability 

• Default: 3 replicas 
– Collosus (GFS v 2) uses erasure codes: 1.5x  

• Clients interact with master for metadata 
– Interacts with chunkservers for actual data manipulation 

• Caching: Client “cache” metadata 
• Chunkservers have automatic Linux caching  
• No other caching at either clients/chunkservers: 

– Neither meaningful nor feasible … (for the involved workloads) 

 

Maximize: 
• Data reliability 
   - e.g., not all replicas on 
the same rack 
• Network utilization 
   - aggregate BW of racks 
     * during reads 
     * but multi-rack write  
     traffic 
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The Single Master 

• Maintains all system metadata  
(held in main memory) 
– Namespace 
– Mapping from files to chunks 
– Current locations of chunks 

 
Stored persistently  

logging mutations in an 
operations log 

storing in  local disk + 
master replicas 

  

Periodic HeartBeat 
with chunkservers to 
keep track of status, 
chunk locations, … 

If this information is lost, then even if the 
chunks “survive”, the file system is useless. 

Advantages: 
• Performance 
• Easy and efficient scan for 
   - garbage collection 
   - re-replication 
   - migration to rebalance 

Introduction NoSQL Codes for storage Appendix 
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Chunk size and system scalability 

• 64MB 
+  Reduces clients’ need to interact with master 

• Many operations are contiguous/sequential on a file 
• involves same chunkserver 
• Client can cache chunk locations for even a multi-TB working set 

+ Client likely to carry out more operations on same chunk 
• Since chunks are large 
• Amortizes network connection costs (persistent TCP connection) 

+ Reduces the size of metadata stored on the master 
• So that it fits in memory (<64 bytes metadata per chunk at Master) 

– Significant performance boost! 
– Possibility of hot spot 
– Fragmentation/poor space utilization 

• Most files are large, so only last chunk partially filled 
• Further mitigated using lazy space allocation   

Introduction NoSQL Codes for storage Appendix 
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Master, client, chunkserver interactions 
Using fixed chunk size, 

byte offset from application 

Design choices: Reduce the master’s involvement as much as possible 
• Cache chunkserver meta-info at clients 
• Obtain/send extra meta-info in advance (amortizing cost of communication) 
• “Heavy” tasks directly between clients/chunkservers   

May include 
immediate next 

chunks’ info  

Introduction NoSQL Codes for storage Appendix 
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Namespace & locks 
• GFS namespace 

– No per directory data structures 
– Lookup table: Mapping full pathnames to metadata 

• Use prefix compression for storage in memory 
• Each node in namespace tree has associated read/write lock 

– To manipulate /d1/d2/…/dn/leaf 
•  Obtain read locks for /d1, /d1/d2, … /d1/d2/…/dn 
• Obtain read or write lock for /d1/d2/…/dn/leaf  

 
 

• Notes: 
– File creation does not require a write lock on the parent directory because 

there is no “directory”, or inode-like, data structure to be protected from 
modification, thus allowing multiple simultaneous mutations in a directory 

– In that order (consistent total order) to avoid deadlocks 
– Allocated lazily, removed once not in use  

Introduction NoSQL Codes for storage Appendix 
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control 

data 

Leases for mutations 

• One chunk replica is given a lease to 
act as the “primary” replica 
– Typically for 60 seconds 

• Renewable repeatedly if mutation 
continues 

–  over HeartBeat messages 
• Master can revoke lease (e.g., for 

snapshot) 
– Primary determines a serial order for all 

mutations in a chunk  
• Other replicas follow this order 

• Global mutation order is defined by 
– The lease grant order 
– Serial order inside a lease 

Data is pipelined linearly:  
- disentangled from control messages  
- optimized for network topology 
- leveraging on full-duplex links  
- providing1MB Tx in ~80ms+ 

Introduction NoSQL Codes for storage Appendix 
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Several other things ... 

• Snapshot 
– Using copy on write 

• Atomic record appends 
– Special/different from writes, since Google had append heavy workload 

• Consistency model 
– Complicated semantics 

• both for defining consistency as well as replicas 

• Stale replica detection, data integrity (using check sums) 
• Garbage collection 
• replica creation, re-creation, rebalancing 

Introduction NoSQL Codes for storage Appendix 
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In the meanwhile … Google grew 

• Mix of applications … 
– Gmail, docs, buzz, … 
– Google earth 
– Youtube … 

• Latency sensitivity 
• Diverse “sizes” of data 
• Both read/write intensive 

Introduction NoSQL Codes for storage Appendix 
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BigTable: Support for structured data 

• Data organized into three dimensions 
– rows, columns, timestamps 

• Not a full fledged RDMBS 

• It is an “application” on top of GFS 
– but, is part of the “infrastrcuture” 

• For other applications   
– relies on Paxos algo. based Chubby  

• A highly available and persistent lock 
service 

Introduction NoSQL Codes for storage Appendix 
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Google’s next generation FS: Collossus 

• Infrastructure for diverse mix of 
workload … 

• Cluster-level file system 
• Data typically written using Reed-

Solomon (1.5x) erasure codes (ECs)* 
• Support for smaller “chunks”  

– More flexibility for diverse application 

• Distribution of Master functionality 
• Why ECs? Can we do better than the 

state of the art? 
– Second half! 

Details are “sketchy” 

* With Microsoft’s Azure also using ECs, they are now pretty much a part of mainstream deployment 

Introduction NoSQL Codes for storage Appendix 
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Time for a break! 
Introduction NoSQL Codes for storage Appendix 
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Failure Is Inevitable   
• But, failure of the system is not an option! 

– Failure is the pillar of rivals’ success … 

• Solution: Redundancy & Distribution 
 

Introduction NoSQL Codes for storage Appendix 

63 



© 2012 A. Datta & F. Oggier, NTU Singapore 

Is the Danger Real? Yes 
Introduction NoSQL Codes for storage Appendix 
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Data Center Fault-Tolerance 
• Faults are omnipresent 

– Hardware, network, software, 
human, misconfiguration, … 

• Cascade of failures in 
interdependent networks 
– Power failure => Network 

switches stop working 
– Network failure => Control 

system for power system 
ineffective   
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Some Numbers 

• Data from Los Alamos National Laboratory (DSN 2006), 
gathered over 9 years, 4750 machines, 24101 CPUs. 

• Distribution of failures: 
– Hardware 60% 
– Software 20% 
– Network/Environment/Humans 5% 

• Failures occurred between once a day to once a month. 

Introduction NoSQL Codes for storage Appendix 
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Redundancy Based Fault Tolerance   

• Replicate data 
– e.g., 3 or more copies 
– In nodes on different racks 

• Can deal with switch failures 

• Power back-up using battery between racks (Google) 

Introduction NoSQL Codes for storage Appendix 
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Redundancy Based Fault Tolerance   
• Using “independent” physical infrastructure 

– Over different availability zones (Amazon AZ) 
• How independent are components in a complex network? 

– Over multiple geographical regions 
 

Note: The recent (April 2011) 
AWS outage was the first 
region-wide failure 
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Five Levels of Redundancy 

• Physical 
• Virtual resource 
• Availability zone 
• Region 
• Cloud 
 

From: http://broadcast.oreilly.com/2011/04/the-aws-outage-the-clouds-shining-moment.html 
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At What Cost? 

• Failure is not an option, but … 
– … are the overheads acceptable? 
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• Erasure codes 
– Much lower storage overhead 
– High level of fault-tolerance  

• In contrast to replication or RAID based systems 

• Has the potential to significantly improve the 
“bottomline”  
– Can it however match the performance needs? 

• An open question*  

 

Reducing the Overheads of Redundancy 

Does erasure coding have a role to play in my data center? 
Zhe Zhang, Amey Deshpande, Xiaosong Ma, Eno Thereska, Dushyanth 

Narayanan 
MSR TR 2010 
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Erasure Codes (ECs) 

• An (n,k) erasure code = a map that takes as input k blocks and 
outputs n blocks, thus introducing n-k blocks of redundancy. 

• 3 way replication is a (3,1) erasure code! 
 
 
 
 
 

• An erasure code such that the k original blocks can be 
recreated out of any k encoded blocks is called MDS 
(maximum distance separable). 
 
 

Encoding 

k=1 block n=3 encoded blocks 
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Reed-Solomon Codes 

• Reed-Solomon Codes are well-known erasure codes.  
• Encoding of (o1,…,ok) is done by polynomial evaluation: 
 
 
 

• The encoding blocks are then p(α1),…,p(αn). 

(named after Irving S. Reed and Gustave Solomon) 
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Decoding …
 

Receive any   
k’ (≥ k) blocks  

…
 

B1 
B2 

Bn 

O1 

O2 

Ok 

Lost blocks 

Erasure Codes (ECs)  

Encoding 

n encoded blocks 
Original 
k blocks  

k blocks 

…
 

D
at

a 
= 

m
es

sa
ge

 

R
ec

on
st

ru
ct

 D
at

a 

O1 

O2 

Ok 

• Originally designed for communication 
– EC(n,k) 

Introduction NoSQL Codes for storage Appendix 

74 



© 2012 A. Datta & F. Oggier, NTU Singapore 

Erasure Codes for Networked Storage 
D

at
a 

= 
O

bj
ec

t 

Encoding 

k blocks 

…
 

O1 

O2 

Ok 

B2 

B1 

Bn 

n encoded blocks 
(stored in storage devices in a network) 

…
 

…
 

Lost blocks 

Retrieve any   
k’ (≥ k) blocks  

Original 
k blocks 

…
 

R
ec

on
st

ru
ct

 D
at

a 

O1 

O2 

Ok 

Decoding Bl 
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Static Resilience 
• Replicated r times 

– Faults that can be tolerated: r-1 
– Probability of failure: f r 

– Storage efficiency: 1/r  
– Access: Find any one good replica 

• Erasure coded (k of n) 
– Faults that can be tolerated: n-k 
– Probability of failure: 

 
 
 

– Storage efficiency: k/n  
– Access: Find k good blocks 

• Assumption: Peer failure is i.i.d. with failure 
probability f 

replica 

replica 

replica 

object 

 
jkjkn

k

j
ff

jkn
n −+−

=

−







+−∑ )1(

1

object 

Blk 

Blk 

Blk 

Blk 

Blk 

Blk 

Blk 

Blk 

Blk 

For f=0.1 
3 of 9 code 
its ~3*10-6 

For f=0.1 
its 10-3 
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B2 

B1 

Bn 

…
 

…
 Lost blocks 

Retrieve any   
k’ (≥ k) blocks 

Original 
k blocks 

…
 

O1 

O2 

Ok 

Decoding Encoding 
Bl 

Recreate  
lost blocks 

Re-insert 

Reinsert in (new) 
storage devices, so 
that there is (again)  
n encoded blocks 

n encoded blocks 

 Replenishing Lost Redundancy for ECs  
• Repair needed for long term resilience.  

• Repairs are expensive!  
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Can We Do Better? 

Pyramid codes 

Regenerating 
codes 

Self-repairing 
codes 

• Erasure codes tailor-made for distributed networked storage.  
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What are Tailored-Made Codes? 
Desired code properties include: 
• Low repair bandwidth 
• Low storage overhead 
• Good fault tolerance  

But also: 
• Repair time 
• I/O 
• …  
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RAID 

• RAID 0 = store data across multiple drives so that the disk 
head can read more data in a single move (striping) 

• RAID 1 = replication is introduced (mirroring) 
• RAID 2,3,4 ,5 = parity bit , sum of all bits across one drive 

(Hamming parity code) 
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Pyramid & Hierarchical Codes 

Oa1 

…
 

Bl
an’ 

Oa2 

Bl
a1 

Os1 

Os2 

…
 

Bg
r’ 

Bg
1 

local 
redundancy 

local 
redundancy 

global 
redundancy 

…
 

Bl
sn’ 

Bl
s1 

subgroup 
subgroup 

…
 

Code group 

…
 

R
eplicate code group 

…
 

global redundancy from
  

the code groups 

Multi-hierarchical extension 

• Essentially ‘‘nested’’ use of erasure codes. 
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Pyramid & Hierarchical Codes  
– If `small’ number of faults  

• Communication restricted within the `hierarchy’ suffice 
• Progressively go higher-up for larger number of faults 
• Isolated faults can be repaired independently  

– Naturally maps to hierarchical data-center design? 
– Asymmetry 

• Different encoded blocks have different importance 
• Difficult to analyze 
• Complex algorithm (for decoding/repair) and system design 

 

Pros 

Cons 

Pyramid Codes: Flexible Schemes to Trade Space for Access Efficiency in 
Reliable Data Storage Systems 

Cheng Huang, Minghua Chen, and Jin Li 
NCA 2007 

Another (essentially identical, but independent) proposal:  Hierarchical Codes: How to Make Erasure Codes 
Attractive for Peer-to-Peer Storage Systems from Eurecom 
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Regenerating Codes 
• Network information flow based arguments to determine 

“optimal” trade-off of storage/repair-bandwidth 
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Regenerating Codes 

• Example code (w/ Functional Repair) 
– Based on random linear network coding 
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Regenerating Codes 
• Example code (w/ Exact Repair) 

– Construction for one failure, contacting all live nodes for repair 
 

N1 

N2 

N3 N4 

N5 

oTv1 oTv2 oTv3 oTv4 

oTv1 oTv5 oTv6 oTv7 

oTv2 oTv5 oTv8 oTv9 oTv3 oTv6 oTv8 oTv10 

oTv4 oTv7 oTv9 oTv10 
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Collaborative Regenerating Codes 
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(Collaborative) Regenerating Codes 
• Pros 

– Network information flow analysis determines optimal (w.r.to 
repair bandwidth) 

• Catch: Subject to MDS property of code (more on this, later) 
– Some proposed codes apply network coding on top of ECs 

• Inherit the properties for EC for de/coding 

• Cons 
– Codes for only specific points on trade-off curve 

• Information flow analysis itself does not suggest any code 
– Restrictive 

• Some proposed codes can carry out repair only for one fault 
• Needs to contact all live nodes for repair to be optimal 

– Not simple: Algorithmic as well as system design 
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• What is the best one can do (w.r.to repairs)? 
– Minimize bandwidth usage per repair 

• Regenerating codes  

– Minimize number of live nodes used per repair 
• Self-repairing codes 

 

 
 

Design Space For Cheaper Repairs 
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Self-repairing Codes (SRC) 
• Self-repairing codes are (n, k) codes s.t. 

– encoded fragments can be repaired directly from other subsets of 
encoded fragments. 

– a fragment can be repaired from a fixed number of encoded 
fragments, independently of which specific blocks are missing 

• Analogous to erasure codes supporting reconstruction using any n - k 
losses, independently of which 

– number of live nodes contacted for repair is minimized. 

Self-repairing Homomorphic Codes for Distributed 
Storage Systems 

Frédérique Oggier and Anwitaman Datta 
Infocom 2011 

Introduction NoSQL Codes for storage Appendix 

89 



© 2012 A. Datta & F. Oggier, NTU Singapore 

Self-repairing Codes: Blackbox View 

B2 

B1 

Bn 

n encoded blocks 
(stored in storage devices in a network) 

…
 

…
 

Lost blocks 

Retrieve some   
k” (< k) blocks (e.g. k”=2) 
to recreate a lost block 

Bl 

Re-insert 

Reinsert in (new) 
storage devices, so 
that there is (again)  
n encoded blocks 
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D
at

a 
= 

O
bj

ec
t 

Encoding 

k blocks 

…
 

O1 

O2 

Ok 

B2 

B1 

Bn 

n encoded blocks 

…
 

…
 

Bl 

(Each of size M/k) 

Linearized polynomial 

with 

   
   

  …
…

   
   

 

Self-repairing Codes 

• There is at least one pair to repair a node, for up to (n-1)/2 
simultaneous failures (Parallel & fast repair of multiple faults) 
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One Example 

(o1+o2+o4) + (o1) => o2+o4 

(o3) + (o2+o3) => o2 
(o1) + (o2) => o1+ o2  

Repair using two nodes 

Four pieces needed to regenerate two pieces  

Say N1 and N3 

(o1+o2+o4) + (o4) => o1+o2 

(o2) + (o4) => o2+ o4  Repair using three nodes 

Three pieces needed to regenerate two pieces  

Say N2, N3 and N4 
 

Self-repairing Codes for Distributed Storage Systems – A 
Projective Geometric Construction 

Frédérique Oggier and Anwitaman Datta ITW 2011 
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One Example: Reconstruction 

o3 
o4 
(o3) + (o1+o3) => o1 
(o1) +(o4)+(o1+o2+o4) => o2  

Reconstruction, say using N3, N4 and N5 
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Maximum Distance Separable (MDS)? 
• SRC is not MDS (and can not be!) 

– Does it matter? 
• Not much 
• In practice, access will be “planned” … 

– PSRC needs less bandwidth than `optimal’ RGC!  
 

 
 

This is with 
random access 

PSRC(21,3) 
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Practical properties 
• (Current) SRCs are not systematic 

– PSRC is “like systematic” 
– Need to contact more nodes (than k) 

• To obtain systematic `pieces’ 
• Same total bandwidth usage 

– Parallel download for access can even be an `advantage’ 
• `mixed’ strategies for access, i.e. get some systematic pieces, and some others … 

– Power saving (by switching off nodes) strategies possible 

• Coding/decoding in PSRC are both using 
–  XOR operations only 
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Outlook 

 
• Interested to  

– Follow: 
http://sands.sce.ntu.edu.sg/CodingForNetworkedStorage/  

– Get involved: {anwitaman,frederique}@ntu.edu.sg  
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Appendix 

MapReduce: Simplified Data Processing on Large Clusters 
Jeffrey Dean and Sanjay Ghemawat 

 OSDI 2004 
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Map-Reduce 

• Introduced by Google in 2004 
– Also available as open source Hadoop (w/ HDFS, etc) 

Systems of elephantine proportion needed 

Distributed 
Processing  
of Big Data 
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The big picture 

• Map: Transforms input data to intermediate (key, value) pair 
• Reduce: Transforms all values for given key to final output  
  

 
Map: In parallel 

Reduce: Key 
aggregated output  

Shuffle: Group common keys  
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“Toy” example: Map  

• Canonical example: Count 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

work independently Three  mappers  
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Shuffle 
1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

msgs @ two reducers 

1, 1, 1, 1 

1, 1 

1, 1 

1, 1, 1 

1 
Key based grouping/sorting 
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Reduce 

4 

2 

2 

3 

1 

1, 1, 1, 1 

1, 1 

1, 1 

1, 1, 1 

1 
two  

reducers 

Introduction NoSQL Codes for storage Appendix 

102 

A real computation typically involves multiple 
rounds of MapReduce  
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