
Evangelos Kranakis, School of Computer Science, Carleton University, Ottawa 1

Computing with

Directional Antennae

in WSNs
By

Evangelos Kranakis

ICDCN, Jan 3, 2012



Evangelos Kranakis, School of Computer Science, Carleton University, Ottawa 2

Outline of Tutorial

• Motivation

• Antennae Basics

• Network Connectivity

– One Antenna

– Multiple Antennae

• Neighbor Discovery

• Wormhole Attacks

• Coverage and Routing
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Motivation
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Antennae Everywhere...
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...Beginning

• Two antennae meet on a roof, fall in love, and get married. The

service wasn’t all that great, but the reception was wonderful!
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Beginning...

• Two antennae meet on a roof, fall in love, and get married. The

service wasn’t all that great, but the reception was wonderful!

• They were on the same wavelength but what did they gain?

Instead of rice, Marconi was thrown, right? And in nine

months or so there will be a little half wave dipole as long as

the impedance was near perfect...
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Comparison of Omnidirectional & Directional Antennae

Omnidirectional Directional

Energy More Less

Throughput More Less

Collisions More Less

Connectivity Stable Intermittent

Discovery Easy Difficult

Coverage Stable Intermittent

Routing SF (∗) Less More

Security Less More

(*) SF = Stretch Factor
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Why Directional Antennae

• Transmitting in particular directions results in a higher degree

of spatial reuse of the shared medium.

• Directional transmission uses energy more efficiently.

• The transmission range of directional antennas is usually larger

than that of omnidirectional antennas, which can reduce hops

for routing and make originally unconnected devices connected.

• Directional antennas can increase spatial reuse and reduce

packet collisions and negative effects such as deafness.

• Routing protocols using directional antennas can outperform

omnidirectional routing protocols.
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Simple Example: Energy Consumption of an Antenna

• An ominidirectional antenna with range r consumes energy

proportional to π · r2.

• A directional antennae with angular spread α and range R

consumes energy proportional to α
2 ·R2.

• Given energy E

– an ominidirectional antenna can reach distance
√
E/π, and

– a directional antenna can reach distance
√

2E/α

• Hence the smaller the angular spread the further you can reach.
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Energy Consumption of a System of Antennae

• For a network of n omnidirectional sensors having range ri, for

i = 1, 2, . . . , n respectively, the total energy consumed will be

n∑
i=1

π · r2
i .

• For a network of n directional sensors having angular spread αi

and range Ri, for i = 1, 2, . . . , n respectively, the total energy

consumed will be
n∑
i=1

αi
2
·R2

i .

• Given that by shortening the angular spread you can increase

the range of a directional sensor the savings can be significant.
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Antennae

Basics
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Outline

• Essentials

• Antennae Examples

• Radiation Patterns

• Idealized Models

– 2D

– 3D
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Essentials
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What is an antenna?

• An antenna is a converter!

– Transmission: converts radio-frequency electric current to

electromagnetic waves, radiated into space

– Reception: collects electromagnetic energy from space and

converts it to electric energy

• In two-way communications, the same antenna can be used for

transmission and reception
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Essental Characteristic: Wavelength

• Wavelength: is the distance, in free space, traveled during

one complete cycle of a wave

• Wave velocity: Speed of light

• Therefore wavelength is given by

λmeters =
300× 106 meters/sec

frequency f in Hertz

• Example: You have a tooth filling that is 5 mm (= 0.005 m)

long acting as a radio antenna (therefore it is equal in length to

one-half the wavelength). What frequency do you receive?
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Examples

• Dipoles are the simplest type of antenna

λ/4λ/2

Hertz antenna Marconi antenna

The Hertz (or half-wave) dipole consists of two straight

collinear conductors of equal length separated by a small

feeding gap. Length of antenna is half of the signal that can be

transmitted most efficiently.

• The Marconi (or quarter-wave) is the type used for portable

radios.
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Types of Antennae

• Isotropic

– Idealized, point in space

– Radiates power equally in all directions

– True isotropic radiation does not exist in practice!

• Dipole

– Half-wave dipole (Hertz antenna)

• Omnidirectional

– 2D isotropic Vertical, 1/4–wave monopole, Marconi,

Groundplane

• Directional

– Yagi

– Parabolic Reflective
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Antennae Examples
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Dipole (1/2)

• Emission is maximal in the plane perpendicular to the dipole

and zero in the direction of wires which is the direction of the

current.
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Dipole (2/2)
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Groundplane (1/2)

• Main element of a ground-plane antenna is almost always

oriented vertically.

• This results in transmission of, and optimum response to,

vertically polarized wireless signals.

• When the base of the antenna is placed at least 1/4 wavelength

above the ground or other conducting surface, the radials

behave as a near-perfect ground system for an electromagnetic

field, and the antenna is highly efficient.
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Groundplane (2/2)
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Yagi (1/2)

• Is a directional antenna consisting of a driven element

(typically a dipole or folded dipole) and additional elements

(usually a so-called reflector and one or more directors).

• It is directional along the axis perpendicular to the dipole in

the plane of the elements, from the reflector toward the driven

element and the director(s).
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Yagi (2/2)
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Radiation Patterns
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Radiation Patterns of Antennae

• Antennae transmit radiation according to specific patterns:

DirectionalOmnidirectional

A
B

A
B

• Omnidirectional are isotropic in the sense that same power

(radiation) is transmitted in all directions.

• Directional antennas have preferred patterns (like an ellipse):

E.g., in the picture above B receives more power than A.
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Dipole Radiation Patterns

• The half-wave dipole has an omnidirectional pattern only in

one planar dimension and a figure eight in the other two.

x

y

z

y

x

z

• For example, the side view along the xy- and zy-plane are

figure eight, while in the zx-plane it is uniform (or

omnidirectional).
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Dipole Radiation Patterns

• A typical directional radiation pattern is shown below.

x

y

z

y

x

z

• Here the main strength of the signal is on the x-direction.
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Dipole: Radiation Pattern
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Groundplane: Radiation Pattern
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Yagi: Radiation Pattern
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Beamwidth of Antennae

• The beamwidth is a measure of the directivity of the antenna.

• It is the angle within which the power radiated by the antenna

is at least half of what it is in the most powerful direction.

• For this reason it is called half-power beam width.

• When an antenna is used for reception, then the radiation

pattern becomes reception pattern.
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Beamwidth
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Directivity and Gain

• Flashlight Analogy

ICDCN, Jan 3, 2012
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Directive Gain

• Directive gain is represented as D(θ, φ), and compares the

radiation intensity (power per unit solid angle) U that an

antenna creates in a particular direction against the average

value over all directions:

D(θ, φ) =
U

Total radiated power/ (4π)
,

where θ and φ are the standard spherical coordinates angles

• The directivity of an antenna is the maximum value of its

directive gain.

• The directive gain signifies the ratio of radiated power in a

given direction relative to that of an isotropic radiator which is

radiating the same total power as the antenna in question but

uniformly in all directions.

ICDCN, Jan 3, 2012



Evangelos Kranakis, School of Computer Science, Carleton University, Ottawa 36

Power Gain

• (Power) gain is a unitless measure combining an antenna’s

efficiency Eantenna and directivity D

G = Eantenna ·D

• When considering the power gain for a particular direction

given by an elevation (or “altitude”) θ and azimuth φ, then

G(θ, φ) = Eantenna ·D(θ, φ)

• The power gain signifies the ratio of radiated power in a

given direction relative to that of an isotropic radiator which is

radiating the total amount of electrical power received by the

antenna in question.
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Antenna Gain

• Power output, in a particular direction, compared to that

produced in any direction by an isotropic antenna

• Can be expressed as a ratio of power

• Better expressed in dBi

10 log10

Pa
Pi
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iPhone Antennae

• Uses the stainless steel band around the phone as the antenna

for GSM, UMTS, WiFi, GPS and Bluetooth

• Design aximizes antenna size (for better performance) and

minimizes space it occupies

• The iPad is using a similar approach where the antenna is the

LCD frame around the screen.
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The Future: Tunable Antennae

• Technology is being pushed to its limits having to accomodate

different frequencies: they need to connect via multiple cellular

bands, WiFi, Bluetooth and receive GPS signals not to

mention the coming of mobile TV and video which may require

even more frequencies.

• Tunable antennas seem to be the upcoming technology as a

single antenna might be used for all the frequencies by changing

its impedance to optimize performance at various frequencies.

• Since tunable antenna are still in development, using the space

around the body of the phone is an ingenious way to free up

board space that would be taken up by multiple antennas.
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Idealized Models
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Realistic Model

• Realistic models of radiation patterns are rather complex
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Basic (Idealized) Model

• Isotropic Omnidirectional

– Idealized, point in plane/space

– Radiates power equally in all directions

• Isotropic Directional

– Idealized, point in plane/space

– Radiates power equally in all directions within a sector/cone
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2D

• Omnidirectional with range r

r

• Directional with range R and angular spread α

α

R
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Omnidirectional as Directional Antennae (1/2)

An omnidirectional antenna consists of directional antennae each

covering a different sector.
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Omnidirectional as Directional Antennae (2/2)

Any of these sectors can be activated in order to connect to a

neighbor.
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Directional Antennae on a Rotating Swivel

The sensor sits on a rotating swivel and can rotate at will in order

to connect to neighbors.
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3D

• Entirely analogous models and assumptions

• Omnidirectional with range r

• Directional with range R and spherical angular spread α

α
Rn
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Communicating with Directional Antennae

• The range of an antenna is divided into n zones.

• Each zone has a conical radiation pattern, spanning an angle of

2π/n radians.

• The zones are fixed with non-overlapping beam directions, so

that the n zones may collectively cover the entire plane.

• When a node is idle, it listens to the carrier in omni mode.

• When it receives a message, it determines the zone on which

the received signal power is maximal.

• It then uses that zone to communicate with the sender.
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Network

Connectivity
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Main Question

• Given a set of sensors with omnidirectional antennae forming a

connected network:

Question: How can omnidirectional antennae be

replaced with directional antennae in such a way that

the connectivity is maintained while the angle and range

being used are the smallest possible?
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Outline

• Motivation

• Orientation Problem

– In 1D.

– In 2D.

∗ Complexity.

∗ Optimal Range Orientation.

∗ Approximate Range Orientation.

– In 3D.

∗ Complexity.

∗ Optimal Range Orientation.

∗ Approximate Range Orientation.

• Variations of the Antenna Orientation Problem.
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Motivation
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Reasons for Replacing Antennae

• Energy Consumption

• Network Capacity

ICDCN, Jan 3, 2012
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Energy

• The energy necessary to transmit a message is proportional to

the coverage area.

– An omnidirectional antenna with range r consumes energy

proportional to πr2.

– A directional antenna with angle ϕ and range R consumes

energy proportional to ϕR2/2.

r
ϕ

R
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Connectivity

• With the same amount of energy, a directional antenna with

angle α can reach further.

1 2 43

1 2 43
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Capacity of Wireless Networks

• Consider a set of sensors that transmit W bits per second with

antennae having transmission beam of width α and a receiving

beam width of angle β.

Sender Receiver

Omnidirectional Directional (β)

Omnidirectional
√

1
2πW

√
n [1] -

Directional (α)
√

1
αW
√
n [2]

√
2π
αβW

√
n [2]

• References:

1. Gupta and Kumar. The capacity of wireless networks. 2000.

2. Yi, Pei and Kalyanaraman. On the capacity improvement

of ad hoc wireless networks using directional antennas. 2003.
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Capacity with Directional Antennae

• Consider a set of sensors that transmit W bits per second with

antennae having transmission beam of width α and a receiving

beam width of angle β.

• Assume that

– sensors are placed in such a way that the interference is

minimum, and

– traffic patterns and transmission ranges are optimally

chosen.

• Then the network capacity (amount of traffic that the network

can handle) is at most
√

2π
αβW

√
n per second.
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Enhancing Security with Directional Antennae

• The use of directional antennae enhances the network security

since the radiation is more restricted.

– Hu and Evansa designed several authentication protocols

based on directional antennae.

– Lu et alb employed the average probability of detection to

estimate the overall security benefit level of directional

transmission over the omnidirectional one.

– Imai et alc examined the possibility of key agreement using

variable directional antennae.
aHu and Evans. Using directional antennas to prevent wormhole attacks.

2004
bLu, Wicker, Lio, and Towsley. Security Estimation Model with Directional

Antennas. 2008
cImai, Kobara, and Morozov. On the possibility of key agreement using

variable directional antenna. 2006
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Antenna Orientation

Problem in the Line
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Antenna Orientation Problem in the Line

• Given a set of sensors in the line equipped with one directional

antennae each of angle at most ϕ ≥ 0.

• Compute the minimum range r required to form a strongly

connected network by appropriately rotating the antennae.

1 2 43
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Antenna Orientation Problem in the Line

• Given ϕ ≥ π. The orientation can be done trivially with the

same range required when omnidirectional antennae are used.

φ

x

φ φ φφ

• Given ϕ < π. The strong orientation can be done with range

bounded by two times the range required when omnidirectional

antennae are used.

x x x x xx
6321 4 5

.....
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Antenna Orientation

Problem in the Plane
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Antenna Orientation Problem

• Given a set of identical sensors in the plane equipped with

one directional antenna each of angle at most ϕ.

• Compute the minimum range such that by appropriately

rotating the antennae, a directed, strongly connected network

on S is formed.

u

v
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Example: Sensors in the Plane

Consider n sensors in the plane.
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Example: Directional Antennae Affect Connectivity
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Connectivity Issues

• When replacing omnidirectional with directional antennae the

network topology changes!

• How do you maintain connectivity in a wireless network when

the network nodes are equipped with directional antennae?

• Nodes correspond to points on the plane and each uses a

directional antenna (modeled by a sector with a given angle

and radius).

• The connectivity problem is to decide whether or not it is

possible to orient the antennae so that the directed graph

induced by the node transmissions is strongly connected.
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Four sensors: Connectivity Example

Left: using omnidirectional antennae they form an underlying

complete network on four nodes.

Right: using directional antennae they form an underlying cycle

on four nodes.
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Connectivity Problem

• We consider the problem of maintaining connectivity using the

minimum possible range for a given angular spread.

• More specifically,

For a set of sensors located in the plane at established

positions and with a given angular spread we are

interested in providing an algorithm that minimizes the

range required so that by an appropriate rotation of each

of the antennae the resulting network becomes strongly

connected.
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Antenna Orientation Problem: Distances

• Given n (identical) sensors in the plane with omnidirectional

antennae, the optimal range can be computed in polynomial

time.

r

• Why?

• Try all possible (at most n2) distances.
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Antenna Orientation Problem: MST

• The sensors already form an omnidirectional network.

r

r

• Actually, the longest edge of the MST is the optimal range.

• Why?
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Antenna Orientation Problem: Angle (1/2)

• Given a directional antenna with angle α.

r

r1
α

• What is the minimum radius r1 to create a strongly connected

network?
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Antenna Orientation Problem: Angle (2/2)

• Given a directional antenna with angle β.

r1

α

r r2

β

• What is the minimum radius r2 to create a strongly connected

network?
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Upper Bound
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Optimal Range Orientation (1/3)

• What is the minimum angle necessary to create a strongly

connected network if the range of the directional antennae is

the same as the omnidirectional antenna?

• Consider an MST T on the set of points.

• If the maximum degree of T is 6, by a simple argument we can

find an MST with the same weight and maximum degree 5.
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Optimal Range Orientation (2/3)

• If the proximity graph is not connected, then clearly no

orientation of the sectors that defines a strongly connected

transmission graph can be found.

• If the proximity graph is connected, consider a MST.

• Since the edge costs are Euclidean, each node on this spanning

tree has degree at most 5.
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Optimal Range Orientation (3/3)

• For each node u, there are two consecutive neighbors v, w in

the spanning tree so that the angle ∠(vuw) is at least 2π/5.

α

u

v

w

• Theorem 2. There exists an orientation of the directional

antennae with optimal range when the angles of the antennae

are at least 8π/5.
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Antenna Orientation With Approximation Range

• Theorem 3. (Caragiannis et ala.) There exists a polynomial

time algorithm that given an angle ϕ with π ≤ ϕ < 8π/5 and a

set of points in the plane, computes a strong orientation with

radius bounded by 2 sin(ϕ/2) times the optimal range.

aCaragiannis, Kaklamanis,Kranakis, Krizanc and Wiese. Communication in

Wireless Networks with Directional Antennae. 2008
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Proof (1/10)

• Consider a Minimum Spanning Tree on the Set of Points.

r(MST )
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Proof (2/10)

• Let r∗(ϕ) be the optimal range when the angle of the antennae

is at most ϕ.

• Let r(MST ) be the longest edge of the MST on the set of

points.

• Observe that for ϕ ≥ 0, r∗(ϕ) ≥ r(MST ).
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Proof (3/10)

• Find a maximal matching such that each internal vertex is in

the matching.

• This can be done by traversing T in BFS order.
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Proof (5/10)

• Orient unmatched leaves to their immediate neighbors.
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Proof (6/10)

• Consider a pair of matched vertices
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Proof (7/10)

• Let {u, v} be an edge in the matching.

u
v

• Consider the smallest disks of same radius centered at u and v

that contain all the neighbors of u and v in the MST.
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Proof (8/10)

• Orient the directional antennae at u and v with angle ϕ in such

a way that both disks are covered.

u
v

ϕ

ϕ

• What is the smallest radius necessary so that the union of the

discs centered at u, v is covered “completely” by the directional

antennae at u, v, respectively?
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Proof (9/10)

• To calculate this smallest radius necessary to cover both disks,

consider the triangle uvw.

u
v

ϕ

w

r

• What is an upper bound on r?

• Observe that without loss of generality we can assume

|uv| = |uw| = 1.
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Proof (10/10)

• Recall the trigonometric identity

sin(α) =

√
1− cos(2α)

2
(1)

• From the law of cosines we can determine an upper bound on r.

r ≤
√
|uv|2 + |uw|2 − 2|uv||uw| cos(2π − ϕ)

=
√

2− 2 cos(2π − ϕ) (since |uv| = |uw| = 1)

= 2 sin( 2π−ϕ
2 ) (by Equation (1))

= 2 sin(π − ϕ/2)

= 2 sin(ϕ/2)
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Lower Bound
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Related Work

• When the angle is small, the problem is equivalent to the

bottleneck traveling salesman problem (BTSP) of finding the

Hamiltonian cycle that minimizes the longest edge.

• A 2-approximation (on the antenna length) is given by Parker

and Rardina.

• For which angles are the two problems equivalent?

aParker and Rardin. Guaranteed performance heuristics for the bottleneck

traveling salesman problem. 1984
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Complexity

• HCBPG

Hamiltonian Circuit Bipartite Planar Grid:

– Input: Bipartite planar grid graph G of degree at most 3.

– Output: Does G have a Hamiltonian circuit?

• HCBPG is NP-Completea.

• By reduction to the problem HCBPG, it can be proved that the

problem is NP-Complete when the angle is less than π/2 and

an approximation range less than
√

2 times the optimal range.

• We can prove something stronger.

aItai, Papadimitriou, and Szwarcfiter. Hamilton Paths in Grid Graphs. 1982
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Computational Complexity

• Theorem 1 (Caragiannis et ala.) Deciding whether there

exists an orientation of one antenna at each sensor with angle

less that 2π/3 and optimal range is NP-Complete. The

problem remains NP-complete even for approximation range

less than
√

3 times the optimal range.

• By reduction to the problem of finding Hamiltonian circuit in

bipartite planar graphs of maximum degree 3. b

• Given a bipartite planar graph G = (V0 ∪ V1, E) of degree ≤ 3

with n nodes, we construct an ε-hexagon graph H (together

with its embedding) which has a hamilton circuit if and only if

G has a hamilton circuit.

aCaragiannis, Kaklamanis,Kranakis, Krizanc and Wiese. Communication in

Wireless Networks with Directional Antennae. 2008
bItai, Papadimitriou, and Szwarcfiter. Hamilton Paths in Grid Graphs. 1982
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Main Idea: ε-Hexagon Graphs

• Let ε > 0. An ε-hexagon graph G = (V,E) is a bipartite planar

graph of maximum degree 3 which has an embedding on the

plane with the following properties:

1. Each node of the graph corresponds to a point in the plane.

2. The euclidean distance between the points corresponding to

two nodes v1, v2 of G is in [1− ε, 1] if (v1, v2) ∈ E and larger

than
√

3− 3ε otherwise.

3. The angle between any two line segments corresponding to

edges adjacent to the same node of G is at least 2π/3− ε/2.

• An ε-hexagon graph is the proximity graph for an instance of

the problem and any orientation of sector of radius 1 and angle

φ = 2π/3− ε that induces a strongly connected transmission

graph actually corresponds to a hamiltonian circuit of the

proximity graph, and vice versa.
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Meta Vertices/Edges

• (Meta vertex:) Replace every vertex by a diamond (three

hexagons)

e1

e2

e3

• (Meta edge:) Replace every edge by a necklace (path of

hexagons)

e′1 e′2
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Hamiltonian Paths

• The meta vertices and necklaces have the following

Hamiltonian paths.

e1

e2

e3

e′1 e′2

e′1 e′2
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Necklaces, Cross and Return Paths (Examples)

• Top to bottom: 1) Orientation of a necklace, 2) cross path, 3)

return path, and 4) representation of the necklace using

irregular hexagons of sides between 0.95 and 1 and with angles

between sides from 115o to 125o.
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Diamonds and Necklaces

• Left to Right: A diamond (left) and its connection to necklaces

when it corresponds to a node of V0 (middle) or V1 (right).
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Embedding

• A bipartite planar graph of maximum degree 3, its embedding

on the rectangular grid, and corresponding ε-hexagon graph.
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Antenna Orientation

Problem in 3D Space
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Sensors in 3D Space

• Due to the fact that sensors may lie in distinct altitudes, the

previous algorithms do not work correctly in 3D space.

• We model an antenna in 3D space with solid angle Ω as a

spherical sector of radius one.

• An omnidirectional antenna has solid angle 4π.
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Sensors in 3D Space

• The apex angle θ of a spherical sector (with solid angle Ω)

is the maximum planar angle between any two generatrices of

the spherical sector.

θ

• Their relation is given by Archimedes formula

Ω = 2π(1− cos θ)
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Complexity of the Antenna Orientation Problem in 3D Space

• Theorem 4. Deciding whether there exists a strong

orientation when each sensor has one directional antenna with

solid angle less than π and optimal range is NP-Complete.
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Proof

• Consider a set S of n points in the plane.

• From Archimedes relation, any plane that cuts the coverage

area of any 3D directional antennae through the apex with

angle Ω has plane angle that satisfies cos(θ) ≤ 1− Ω
2π .

• Therefore θ < 2π/3 if and only if Ω < π.

• A strong orientation of the directional antennae with angle less

than 2π/3 in 2D implies a strong orientation of directional

antennae with angle less than π in 3D.

• The opposite is also true.
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Tammes’ Radius

• The Tammes radius is the maximum radius of n equal

non-overlapping circles on the surface of the sphere.

α
Rn

• We denote it by Rn.
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Kissing Number and Tammes’ Radius

• The Kissing number is the number of balls of equal radius that

can touch an equivalent ball without any intersection,
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Kissing Number and Tammes’ Radius

• In particular, the Tammes’ Radius is equivalent to the kissing

number when all the balls have the same radius.

• The maximum degree of an MST is equal to the kissing

number.

• In 3D it is 12.
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Optimal Range Orientation in the Space

• Theorem 5. There exists an orientation of the directional

antennae in 3D with optimal range when the solid angles of the

antennae are at least 18π/5.
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Proof (1/4)

• Let T be an MST on the points.

• Let Bp be the sphere centered at p of minimum radius that

covers all the neighbors of p in T .

• For each neighbor u of p in T , let u′ be the intersection point of

Bp with the ray emanating from p toward u
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Proof (2/4)

• Thus, we have an unit sphere with at most 12 points.

• Compute the Delauney Triangulation on the points of the

sphere.

• Orient the antenna in opposite direction of the center of largest

triangle.
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Proof (3/4)

• Observe that every edge of the Delaunay Triangulation has

length at least twice the Tammes’ Radius R12 = sin 63o26
2 .

• Thus, every triangle is greater than the equilateral triangle of

side 2R12.

2R12

a

a

2π/3

a

2R12

2R12
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Proof (4/4)

• It follows that

R12 = sin

(
63o26′

2

)
a = R12/

√
3

α ≤ arcsin(a)

• and therefore

Ω ≥ 4π − 2π(1− cos(α))

= 2π(1 + cos(α))

= 2π

(
1 + cos

(
arcsin

(
2R12√

3

)))
≥ 18π

5
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Antenna Orientation With Approximation Range

• Theorem 6. Given a solid angle ϕ with 2π ≤ ϕ < 18π/5 and a

set of points in the space, there exists a polynomial time

algorithm that computes a strong orientation with radius

bounded by

√
Ω(4π−Ω)

π times the optimal range.
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Proof (1/3)

• Let T be the MST on the set of points.

• Consider a maximal matching such that each internal vertex is

matched.

• Orient unmatched leaves to their immediate neighbors.

• Let {u, v} be an edge in the matching. Consider the smallest

sphere of same radius centered at u and v that contain all the

neighbors of u and v in the MST.
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Proof (2/3)

• Orient the directional antennae at u and v with plane angle 2θ

in such a way that both spheres are covered.

v u
2θ

2θ

w
r
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Proof (3/3)

• From the law of cosine we can determine r.

• Let θ be the apex angle of Ω.

• Observe that

r =
√
|uv|2 + |uw|2 − 2|uv||uw| cos(2θ)

≤
√

2− 2 cos(2θ)

= 2 sin(θ)

= 2
√

1− cos2(θ)

= 2
√

1− (1− Ω
2π )2

=

√
Ω(4π−Ω)

π
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Summary of the Antenna Orientation Problem

2D 3D

Angle Range Solid Angle Range

ϕ < 2π
3 NP-C Ω < π NP-C

2π
3 ≤ ϕ < π Open π ≤ Ω < 2π Open

π ≤ ϕ < 8π
5 2 sin(ϕ/2) 2π ≤ Ω < 18π

5

√
Ω(4π−Ω)

π

ϕ ≥ 8π
5 1 Ω ≥ 18π

5 1
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Multiple

Antennae
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Overview

• Introduction

• Multiple Antennae Orientation Problem: Angle/Range

Tradeoffs

– Upper Bounds

– Lower Bounds/NP-Hardness

– Toughness of UDGs and Robust Antennae Range

• Minimum Number of Antennae Orientation Problem

• Conclusions/Open Problems
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Introduction
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Orientation Problem

• Given a set S of sensors. Assume that each sensor has k > 1

directional antennae such that the sum is at most ϕ.

What is the minimum range necessary to create a

strongly connected network by appropiatly rotating the

antennae?

• Two variants: Transmission angle (spread) is limited to ϕ,

where ϕ is

– either the sum of angles for antennae in the same node, or

– the maximum transmission angle of the antennae.
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The Setting

• Set of sensors represented as a set of points S in the 2D plane.

• Each sensor has k directional antennae.

• All antennae have the same transmission range r.

• Each antenna has a max transmission angle, forming a

coverage sector up to distance r.

• Typically, we fix k and ϕ and try to minimize r for a given

point set S.
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Transmission Range

• r(k,ϕ)−OPT (S) denotes the optimal (shortest) range for which a

solution exists.

• rMST (S) is the shortest range r such that UDG(S, r) is

connected.

– obviously, rMST (S) ≤ r(k,ϕ)−OPT (S)

• As establishing r(k,ϕ)−OPT might be NP-hard, we will compare

the radius r produced by a solution to rMST .

– for simplicity, we re-scale S to get rMST = 1

– later, we will discuss comparing to r(k,ϕ)−OPT
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Angle/Range Tradeoffs:

Minimize Sum of Angles
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Basic Observations

• Angle between (any two) incident edges of an MST is ≥ π/3.

• For every point set there exists an MST of maximal degree 5.

• All angles incident to a vertex of degree 5 of the MST are

between π/3 and 2π/3 (included).

• Observation: with k ≥ 5 antennae, each of spread 0, there

exists a solution with range 1.

• Main method: Locally modify the MST, using various

techniques when k is smaller than the degree of the node in the

MST to (locally) ensure strong connectivity: Use

1. antenna spread to cover several neighbors by one antenna,

2. neighbour’s antennae to locally ensure strong connectivity

ICDCN, Jan 3, 2012



Evangelos Kranakis, School of Computer Science, Carleton University, Ottawa 124

Upper Bounds: Sum of Angles

# Antennae Spread Antennae Range Paper

1 0 ≤ ϕ < π 2 [4]

1 π ≤ ϕ < 8π/5 2 sin(ϕ/2) [2]

1 8π/5 ≤ ϕ 1 [2]

2 2π/3 ≤ ϕ < π 2 cos(ϕ/4) [1]

2 π ≤ ϕ < 6π/5 2 sin(2π/9) [1]

2 6π/5 ≤ ϕ 1 [1]

3 4π/5 ≤ ϕ 1 [1]

4 2π/5 ≤ ϕ 1 [1]
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Antenna Range 1

• Theorem. For any 1 ≤ k ≤ 5, there exists a solution with

1. range 1,

2. and antenna spread 2(5−k)π
5 .

• Why?

– exclude k largest incident angles

– this leaves k segments of total spread 2(5−k)π
5

ICDCN, Jan 3, 2012



Evangelos Kranakis, School of Computer Science, Carleton University, Ottawa 126

Two Antennae, ϕ ≥ π, Range 2 sin(2π/9)

• Theorem. There is a way to set up 2 antennae per vertex,

with antenna spread of π and range 2 sin(2π/9) in such a way

that the resulting graph is strongly connected.

• Proof: By proving that Tv is nice for all v, by induction on the

depth of Tv.

– A vertex p is a nearby target vertex to a vertex v ∈ T if

d(v, p) ≤ 2 sin(2π/9) and p is either a parent or a sibling of

v in T .

– A subtree Tv of T is nice iff for any nearby target vertex p

the antennae at vertices of Tv can be set up so that the

resulting graph (over vertices of Tv) is strongly connected

and p is covered by an antenna from v.
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Induction: Case Analysis on the Number of Children of u
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Angle/Range Tradeoffs:

Minimize Max Range
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Main Theorem (Upper Bound)

• Consider a set S of n sensors in the plane and suppose each

sensor has k, 1 ≤ k ≤ 5, directional antennae.

– Then the antennae can be oriented at each sensor so that

the resulting spanning graph is strongly connected and the

range of each antenna is at most

2 · sin
(

π

k + 1

)
times the optimal.

– Moreover, given a MST on the set of points the spanner can

be constructed with additional O(n) overhead.
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Main Steps: Angle 0

• The more antennae per sensor the easier the proof.

• Algorithm is in three steps.

1. 4 Antennae: Spread 0, Range 2 sin(π/5)

2. 3 Antennae: Spread 0, Range 2 sin(π/4)

3. 2 Antennae: Spread 0, Range 2 sin(π/3)

• Details of complete algorithm too technical to present here!

• Lets outline the ideas for the proof of Item 1.

ICDCN, Jan 3, 2012



Evangelos Kranakis, School of Computer Science, Carleton University, Ottawa 131

Main Idea: Angle 0

• Idea:

– By induction on the depth of the MST T

– Not connecting child solutions to the parent vertex, but

rather removing all leaves, applying the induction

hypothesis, then returning the leaves and showing how to

connect them

• Note: since the spread is 0, a solution can be represented as a

directed graph
−→
G with maximum out-degree k and edge

lengths at most 2 sin( π
k+1 ).
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Example: 4 Antennae, Spread 0, Range 2 sin(π/5)

Induction hypothesis: Let T be an MST of a point set of radius

at most x. Then, there exists a solution
−→
G for T such that:

• the out-degree of u in
−→
G is one for each leaf u of T

• every edge of T incident to a leaf is contained in
−→
G

Base step:

uw

v
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Inductive Step: 4 antennae, spread 0

uu0
u2

u3

T ′ Tu1

uu0
u2

u3

T ′ T

u4

u1

uu0

u1

T ′ T
u2

u3

u4

uu0

u1

T ′ T

u2

u3

u4
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Summary of Complete Picture: Upper Bounds

# Antennae Spread Antennae Range Paper

1 0 ≤ ϕ < π 2 [4]

1 π ≤ ϕ < 8π/5 2 sin(π − ϕ/2) [2]

1 8π/5 ≤ ϕ 1 [2]

2 0 ≤ ϕ < 2π/3
√

3 [3]

2 2π/3 ≤ ϕ < π 2 sin(π/2− ϕ/4) [1]

2 π ≤ ϕ < 6π/5 2 sin(2π/9) [1]

2 6π/5 ≤ ϕ 1 [1]

3 0 ≤ ϕ < 4π/5
√

2 [3]

3 4π/5 ≤ ϕ 1 [1]

4 0 ≤ ϕ < 2π/5 2 sin(π/5) [3]

4 2π/5 ≤ ϕ 1 [1]
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Lower Bounds
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Is the Result Optimal?

• Consider regular k + 1-star.

– With angle less then 2π
k+1 , the central vertex cannot reach

all leaves using k antennae, hence a leaf must connect to

another leaf, using range at least 2 sin( π
k+1 ).

– Hence results for spread 0 are optimal . . .

– . . . with respect to rMST .

• But what about r(k,ϕ)−OPT ?

• In regular k + 1-star also r(k,ϕ)−OPT is large!
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Main Theorem (Lower Bound)

• For k = 2 antennae.

– Let x and α be the solutions of equations

x = 2 sin(α) = 1 + 2 cos(2α)

(Note: x ≈ 1.30, α ≈ 0.45π.)

– If the angular sum of the antennae is less then α then it is

NP-hard to approximate the optimal radius to within a

factor of x.

• The proof is by reduction from the problem of finding

Hamiltonian cycles in degree three planar graphs.
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Key Gadgets

Take a degree three planar graph G = (V,E) and replace each

vertex vi by a vertex-graph (meta-vertex) Gvi shown in Figure 1a.

Furthermore, replace each edge e = 〈vi, vj〉 of G by an edge-graph

(meta-edge) Ge shown in Figure 1b.

vi1

vi2

ui1

ui2

wi2wi1

(a) Vertex graph (The dotted

ovals delimit the three parts.)

v′i

v′j

v′′j

v′′i

vj1

vj2

vi1

vi2

π′
vi

π′′
vi

π′
vj

π′′
vj

(b) Edge graph (The connecting

vertices are black.)

Figure 1: Meta-vertex and meta-edge for the NP completeness proof
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Embed Resulting Graph in the Plane:

1) Distance (in the embedding) between neighbours in G′ is ≤ 1, 2)

the distance between non-neighbours in G′ is ≥ x, and 3) the

smallest angle between incident edges in G′ is ≥ α.

v′i
v′′i

vi1vi2

π′
viπ′′

vi

πvi1

πvi2

x

x

xx

x = 1 + 2 cosα

x = 2sin(α/2)

α

α

α

α

α/2

α/2

1

1

1

1

Figure 2: Connecting meta-edges with meta-vertices (The dashed

ovals show the places where embedding is constrained. )

ICDCN, Jan 3, 2012



Evangelos Kranakis, School of Computer Science, Carleton University, Ottawa 140

Key Observations

• Each meta-vertex must have at least incoming and one

outgoing meta-edge

• Each meta-vertex can have at most one outgoing meta-edge

• Hence each meta-vertex has exactly one outgoing and one

incoming meta-edge
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What we know so far

Out Lower Upper Approx. Complexity

degree Bound Bound Ratio

4 rMST 2 sin(π/5)rMST 2 sin(π/5) Polynomial

3 rMST 2 sin(π/4)rMST

√
2 Polynomial

2 rMST 2 sin(π/3)rMST

√
3 Polynomial

2 - - ≤ 1.3 NP-Complete
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Toughness of Antennae

and Robust Range

(Cases k = 3, 4)
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Lower Bounds for k = 3 and k = 4: Main Idea

• For a pointset P : How robust is the radius r to point deletions?

• For S ⊆ P , let rk(S) := “smallest radius r s.t, UDG(P \ S, r)
does not contain a (k + 1)|S| connected components”.

• Obviously, rk(S) ≤ r(k,0)−OPT (S). Is rk(S) = r(k,0)−OPT (S)?

• r3(S) < r(3,0)−OPT (S)! E.g., take S = {u1, u2, u3}.

u1

u2

u3

• How about r4(S) = r(4,0)−OPT (S)?
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Tougness of UDGs

• The concept of toughness of a graph as a measure of graph

connectivity has been extensively studied in the literature.

• Intuitively, graph toughness measures the resilience of the

graph to fragmentation after subgraph removal.

• A graph G is t-tough if |S| ≥ tω(G \ S), for every subset S of

the vertex set of G with ω(G \ S) > 1.

• The toughness of G, denoted τ(G), is the maximum value of t

for which G is t-tough (taking τ(Kn) =∞, for all n ≥ 1).

• We are interested in the toughness of UDGs over a given point

set P , and in particular how does the toughness of U(P, r)

depends on the radius r.
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New Concept: Robust Range

Definition 1 [Strong and Weak t-robustness for UDG radius] Let

P be a set of points in the plane.

1. A subset S ⊆ P is called t-tough if ω(U(P \ S; r)) ≤ |S|/t.
Similarly, a point u is called t-tough if the singleton {u} is

t-tough.

2. The strong t-robustness of the set of points P , denoted by

σt(P ), is the infimum taken over all radii r > 0 such that for

all S ⊆ P , the set S is t-tough for the radius r.

3. The weak t-robustness of the set of points P , denoted by αt(P ),

is the infimum taken over all radii r > 0 such that for all

u ∈ P , the point u is t-tough for the radius r.
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Main Result

• Theorem. We have

1. σ1/k(P ) ≤ rk(P ), for all k.

2. For any set P of points, α1/4(P ) = σ1/4(P ).

3. For every point of P , weak 1/i-robustness, for 1 ≤ i < 5,

can be computed in time O(|P | log |P |).

• In particular,

1. the optimal range for the 4 antennae orientation problem

(strong connectivity) can be solved in O(n log n) time,

2. a 2 sin(2π/9) approximation to the optimal range for the 3

antennae orientation problem can be solved in O(n log n)

time.
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Summary of Results

Out Lower Upper Approx. Complexity

degree Bound Bound Ratio

4 σ1/4 α1/4 1 O(n log n)

3 σ1/3 2 sin(2π/9)α1/3 ≤ 2 sin(2π/9) O(n log n)
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Conclusions/Open Problems

• There are still gaps between the lower and upper bounds,

especially for non-zero ϕ

• The x and ϕ in the NP-hardness results might possibly be

improved

• Consider different model variants

– directional receivers

– temporal aspects (antennae steering, ...)

• and different problems...
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Minimum Number of

Antennae
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Antenna Orientation Problem

• Given a connected network formed by a set of sensors with

omnidirectional antennae and an angle ϕ ≥ 0.

Compute the minimum number of arcs in the network in

such a way that the resulting network is strongly

connected and the stretch factor does not depend on the

size of the network.

• Two variants:

– Notice that you must respect the underlying network.

– Can consider angle/range tradeoffs.
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Orienting Edges of Undirected Graph with Original Range

• Orient every edge in both directions

– stretch factor 1 but 2|E| arcs

• Orient edges along a Hamiltonian cycle (if it exists)

– |V | arcs but unbounded stretch factor

• (Roberts, 1935) Strong Orientation Procedure

1. label vertices 1..n according to DFT T

2. orient ij as i→ j iff ij ∈ T and i < j

3. orient ij as i→ j iff ij 6∈ T and i > j

• (Robbins, 1939) G has a strong orientation iff it is connected

and 2-edge connected.

• (Nash-Williams, 1960) Every G has an orientation D so

that ∀u, v ∈ V , λD(u, v) ≥ b 1
2λG(u, v)c, where λ(u, v) is the

number of u− v paths
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Strong Orientation Algorithms

Can give algorithms to strongly orient a given (planr) graph

G = (V,E) for

• More than |E| Edges

• Exactly |E| Edges

• Less than |E| Edges
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Orientation Algorithms (More than |E| Edges)

• Theorem. Let G = (V,E) be a plane 2-edge connected graph

with a face λ-coloring. Then it has a strong orientation with at

most (
2− 4λ− 6

λ(λ− 1)

)
· |E|

arcs and stretch factor at most φ(G)− 1, where φ(G) = max

number of edges of a face of G.
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Orientation Algorithms (Exactly |E| Edges)

• Theorem. Let G = (V,E) be a plane 2-edge connected graph

with a face λ-coloring. Then it has a strong orientation with

exactly |E| arcs and stretch factor at most

(φ(G)− 1)d
λ+1
2 e.
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Orientation Algorithms (Less than |E| Edges)

• Theorem. Let G = (V,E) be a plane 3-edge connected graph.

Then it has a strong orientation with at most(
1− k

10(k + 1)

)
· |E|

arcs and stretch factor at most φ(G)2 · (φ(G)− 1)2k+4, for any

k ≥ 1.
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Introduction
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Goals

• Investigate the complexity of discovering neighbors in a setting

of rotating antennae:

– What knowledge is required?

– How long does it take?

– What protocols are possible?

– How does it compare to the omnidirectional setting?
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Communication Models with Directional Antennae

• (O,O) model: two sensors can communicate if they are within

transmission range of each other,

• (D,O) (respectively, (O,D)) model: the sender (respectively,

receiver) must turn its antenna so as to reach its neighbor, and

• (D,D) model: both sender and receiver must direct their

antennae towards each other at the same time.

This is the model we look at!
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Neighbor Discovery Process

• Usually entails the exchange of identities (e.g., MAC addresses)

between two adjacent nodes.

• It will be sufficient to assume that this is a one step process

whereby one sensor sends its identity and the other

acknowledges by sending back its own.

• We assume that the sensors have distinct identities but their

corresponding locations (i.e., (x, y)-coordinates) in the plane

are not known to each other.

• There is a vertex coloring χ : V → {0, 1, . . . , c− 1}
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Parameters of the Directional Antennae Model

• For simplicity, for each node u assume an angle (or beam

width) φu = 2π
ku

, for some integer ku.

u
φ

u

Figure 3: An antenna at u rotating counter-clockwise.

• Sensor network is synchronous
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Deterministic

Algorithms

ICDCN, Jan 3, 2012



Evangelos Kranakis, School of Computer Science, Carleton University, Ottawa 165

Deterministic Algorithms

• Lower Bound: Ω(kukv) time steps, for two sensors u, v within

communication range of each other.

• Upper Bounds

Antenna at u Knowledge Running Time Theorems

2π/k Identical O(kc−1) Theorem 1

2π/k Identical O(k(c ln c)3) Theorem 2

Table 1: Theorems and running times of deterministic algo-

rithms.

• Recall our basic assumption that there is a coloring

χ : V → {0, 1, . . . , c− 1} of the vertices of the sensor network

using c colors.
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Lower Bound

• Consider two sensors u, v within communication range of each

other and respective antenna beam widths 2π
ku

and 2π
kv

,

respectively. If the sensors do not know each other’s location

then any algorithm for solving the neighbor discovery problem

in the (D,D) communication model requires at least Ω(kukv)

time steps.

• This is because, for a successful communication to occur each

sensor must be within the beam of the other sensor’s antenna

at the same time. Since the sensors do not know each other’s

location they must attempt transmissions in all their respective

sectors.
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Communicating Position

1. Sensors must be within range of each other.

Figure 4: Directional antennae in communicating position.

(a) An antenna at u with

sectors counted counter-

clockwise.

u

North

South

West East

(b) Neighbor discovery for sen-

sors u, v.

u

φ
u

φ
v

v

2. Directional antennae must be facing each other.
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Communication Failure of Deterministic Algorithms

• Not every deterministic algorithm would work!

• Example: Sensor u employs delay du = 2 and sensor v delay

dv = 1, under which sensors with directional antennae will

never be able to communicate as illustrated in Figure 5.

u 0

3

1

2 0

3

1

2 v

Figure 5: Neighbor discovery for sensors u, v is not possible.
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(Basic) Antenna Rotation Algorithm (with Delay)

• For each sensor u, let du be an integer delay parameter and k

be defined so that φ = 2π
k

Algorithm 1: Antenna Rotation Algorithm ARA(du, ku)

1 Start at a given orientation;

2 while true do

3 for i← 0 to du − 1 do

//For du steps stay in chosen sector

4 Send message to neighbor(s);

5 Listen for messages from neighbor(s) (if any);

6 Rotate antenna beam one sector counter-clockwise;

//rotate by an angle equal to φ
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A Simple Choice of Delays

• A simple theorem is the following:

• Theorem 1 Consider a set of sensors in the plane with

identical antenna beam widths equal to φ = 2π
k . For each sensor

u let the delay be defined by du := kχ(u). If each sensor u

executes algorithm ARA(du, k) then every sensor in the

network will discover all its neighbors in at most kc−1 time

steps.

• Running time can be improved by choosing delays

appropriately!
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Improving on Delay

Theorem 2 Consider a set of sensors in the plane such that the

antenna beam width of sensor u is equal to φ = 2π
k . Assume the

sensor network is synchronous. Suppose that the delays du at the

nodes are chosen so that

1. gcd(k, du) = 1, for all u, and

2. if u, v are adjacent then gcd(du, dv) = 1.

If each sensor u executes algorithm ARA(du, k) then every sensor

in the network will discover all its neighbors in at most

O
(
(k(maxu du)3

)
time steps.

In addition, the delays du can be chosen so that every sensor in the

network will discover all its neighbors in at most O(k(c log c)3 time

steps.

In particular, this is at most O
(
(c ln c)3

)
time steps, if k ∈ O(1).
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Proof (1/2)

• Without loss of generality assume that

1. u and v are in horizontal position and sensor u is to the left

of sensor v, and

2. that both antennae orientations are initially set to East.

• u, v can communicate when v’s antenna is facing West which is

sector bk2 c.
• Since gcd(du, dv) = 1, by Euclid’s algorithm there exist integers

0 < au < du, 0 < av < dv such that

audu = avdv + 1. (2)

• Lets look at sensor u first. After duk steps sensor u will be in

its starting position and, clearly, the same applies for any time

duration that is a multiple of duk. Thus sensor u is in its initial

position (facing East) at time jauduk, for any j > 0.
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Proof (2/2)

• Multiply both sides of Equation audu = avdv + 1 by jk to

obtain jauduk = javdvk + jk

• So at time t = jauduk sensor u is facing East. If there is a j

such that jk = bk2 cdv + r for 0 ≤ r < dv, then sensor v is facing

West and therefore the sensors u, v can discover each other.

• Find a j such that,

jk ≤
⌊
k

2

⌋
dv < jk + k (3)

which means that jk + k = bk2 cdv + r, with r ≤ k < dv.

• A simple modification of the proof will prove the result when

the two sensors are not necessarily on a horizontal line.

• # of rotations required is jauduk, where j satisfies

Inequality (3).
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Randomized

Algorithms
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Randomized Neighbor Discovery Algorithms

• Upper Bounds

Antenna at u Knowledge Running Time Theorems

2π/k Identical knO(1) Theorem 3

2π/k Identical O(k2 log n) Theorem 4

2π/ku maxu ku ≤ k O(k4 log n) Theorem 5

Table 2: Theorems and running times of randomized algorithms.
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Randomized Neighbor Discovery Algorithm (1/4)

Algorithm 2: Randomized Antenna Rotation Algorithm

RARA(du, k)

1 Select du ← RANDOMPRIME(k..R);

2 Execute ARA(du, k);

Theorem 3 Consider a set of sensors in the plane such that the

antenna beam width of sensor u is equal to φ = 2π
k . Assume the

sensor network is synchronous. If each sensor u executes algorithm

RARA(k;R), where R = nO(1) and n is an upper bound on the

number of sensors, then every sensor in the network will discover

all its neighbors in at most knO(1) expected time steps, with high

probability.
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Randomized Neighbor Discovery Algorithm (2/4)

• For every node u, let N(u) denote the neighborhood of u and

deg(u) the degree of u.

• Let D = maxu deg(u) denote the maximum degree of a node of

the sensor network.

• By the prime number theorem, the number of primes ≤ R and

> k is approximately equal to R
lnR − k

ln k and therefore the

probability that the primes chosen by two adjacent nodes, say

u and v, are different is 1− 1
R

lnR− k
ln k

.

• Let Eu be the event that the prime chosen at u is different

from all the primes chosen by its neighbors.
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Randomized Neighbor Discovery Algorithm (3/4)

• It is easily seen that

Pr[Eu] = 1− Pr[¬Eu]

= 1− Pr [∃v ∈ N(u)(du = dv)]

≥ 1−
∑

v∈N(u)

Pr [du = dv]

≈ 1− deg(u)
1

R
lnR − k

ln k

≥ 1−D 1
R

lnR − k
ln k

.
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Randomized Neighbor Discovery Algorithm (4/4)

• Similarly, we can prove that

Pr

[⋂
u

Eu

]
= 1− Pr

[⋃
u

¬Eu
]

≥ 1−
∑
u

Pr[¬Eu]

≥ 1− nD 1
R

lnR − k
ln k

≥ 1− 1

n
.

• By choosing R in nO(1) and recalling that D ≤ n we see that

all the primes chosen by all the nodes in the network are

pairwise distinct, with high probability.
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Additional Algorithms

• Theorem 4 Consider a set of n sensors in the plane with

identical antenna beam width equal to φ = 2π
k . Assume the

sensor network is synchronous. There is an algorithm so that

every sensor in the network will discover all its neighbors in at

most O(k2 log n) expected time steps, with high probability.

• Theorem 5 Consider a set of n sensors in the plane such that

sensor u has antenna beam width equal to φu = 2π
ku

. Assume

the sensor network is synchronous and that an upper bound k is

known to all sensors so that maxu ku ≤ k. There is an

algorithm so that every sensor in the network will discover all

its neighbors in at most O(k4 log n) expected time steps, with

high probability.
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Conclusions

• Interesting Problem: Efficiency of broadcasting

1. in the single channel UDG model, i.e., there is a single

send/receive channel and multiple transmissions on the

same node produce packet collisions, and

2. a link between two sensors u, v exists if and only if

d(u, v) ≤ 1.

• If broadcasting time with omnidirectional antennae without

collisions is B then the result of Theorem 3 indicates that

broadcasting in the directional antennae model can be

accomplished in time O(B(c ln c)3), where c is the number of

colors of a vertex coloring of the sensor network. The main

question arising is whether we can improve on this time bound

when using directional antennae.

ICDCN, Jan 3, 2012



Evangelos Kranakis, School of Computer Science, Carleton University, Ottawa 182

Additional Work

• J. Du, E. Kranakis, O. Morales Ponce, S. Rajsbaum, Neighbor

Discovery in a Sensor Network with Directional Antennae. In

proceedings of Algosensors 2011, Saarbruecken, Germany,

September 08-09, 2011.
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Wormhole Attacks

in Sensor Networks
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Introduction

• Wormhole Attacks

• Detecting Wormholes

• Preventing Wormholes with Directional Antennae

• Protocols
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Wormhole Attacks
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Wormhole Attacks

A and B are not neighbors.

The attacker can make A and B believe they are neighbors.

X

Y

A

B

The attacker replays packets received by X at node Y , and vice

versa.
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Wormhole Attacks

• In a wormhole attack, an attacker forwards packets through a

high quality out-of-band link and replays those packets at

another location in the network.

• The attacker replays packets received by X at node Y , and vice

versa.

• If it would normally take several hops for a packet to traverse

from a location near X to a location near Y , packets

transmitted near X traveling through the wormhole will arrive

at Y before packets traveling through multiple hops in the

network.

• The attacker can make A and B believe they are neighbors by

forwarding routing messages, and then selectively drop data

messages to disrupt communications between A and B.
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Impact on Routing Protocols: Beyond the Neighborhood

For most routing protocols, the attack has impact on nodes beyond

the wormhole endpoints’ neighborhoods.

X

Y

A

B

C

ICDCN, Jan 3, 2012



Evangelos Kranakis, School of Computer Science, Carleton University, Ottawa 189

Impact on Routing Protocols: One-Hop Tunneling

• Node A will advertise a one-hop path to B so that C will direct

packets towards B through A.

• For example, in on-demand routing protocols (DSR and

AODV) or secure on-demand routing protocols (SEAD,

Ariadne, SRP), the wormhole attack can be mounted by

tunneling ROUTE REQUEST messages directly to nodes near

the destination node.

• Since the ROUTE REQUEST message is tunneled through

high quality channel, it arrives earlier than other requests.
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Impact on Routing Protocols: Sinkholes and More

• Wormhole attacks prevent other routes from being discovered.

• The wormhole will have full control of the route.

• The attacker can discard all messages to create a

denial-of-service attack, or more subtly, selectively discard

certain messages to alter the function of the network.

• An attacker with a suitable wormhole can easily create a

sinkhole that attracts (but does not forward) packets to many

destinations.

• An intelligent attacker may be able to selectively forward

messages to enable other attacks.
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Impact on Sensor Networks: Disrupting Strategically

• An intelligent attacker may be able to place wormhole

endpoints at particular locations.

• Strategically placed wormhole endpoints can disrupt nearly all

communications to or from a certain node and all other nodes

in the network.

• In sensor network applications, where most communications

are directed from sensor nodes to a common base station,

wormhole attacks can be particularly devastating.
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Impact on Sensor Networks: Location Matters

• In sensor networks traffic is directed from sensors to a base

station.

• A wormhole can disrupt traffic depending on its location
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Impact on Sensor Networks: Location Matters

• If the base station is at the corner of the network, a wormhole

with one endpoint near the base station and the other endpoint

one hop away (from base station) will be able to attract nearly

all traffic from sensor nodes to the base station.

• If the base station is at the center of the network, a single

wormhole will be able to attract traffic from a quadrant of the

network.
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Detecting Wormholes
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Wormhole: Example

• Let the network be represented by a graph, G.
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Multiple Wormholes: Example
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Wormhole Subgraph

• Now consider the subgraph of G containing only nodes

connected via a wormhole.

• Label 5 nodes in this subgraph {a, b, c, d, e}.
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Edge Contraction

• Now contract the edges of the subgraph so that only the

labelled nodes remain
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K5

• If we now add the edges due to the wormhole connection we

get K5.
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Contradicting Planarity

• But by Kuratowski’s Theorem, this means that G is not planar.

• Therefore the existence of the wormhole has made the

connectivity graph non-planar and the routing algorithm,

which requires planarity, will no longer work.
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Altering the Topology: Impossible Graphs

• Core problem in discovering wormholes: identifying neighbours

who would not be if the wormhole did not exist.

• Two main approaches to accomplish this task:

1. those that attempt to make the determination based solely

on connection information, and

2. those using in part location awareness of the nodes (even if

only within a neighbourhood) and determine if arrangement

of nodes is possible.
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Test for Impossible Graphs

• Perform neighbour discovery (ND) and run a planarization

algorithm.

• If we discover there are wormhole links and removed these

links, the graph could become disconnected.

• This is the reason wormhole discovery is performed during ND,

and we will refer to such an algorithm as secure neighbour

discovery (SND).
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Hop-1 Test

• Consider the process of ND between two neighbours u and v

• If u and v are neighbours, and not connected by a wormhole,

they can have at most 2 independent neighbours in common
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An Impossible Graph

• In the presence of a wormhole, two nodes (a and b if they were

connected) can have three independent neighbours (c, d and e).
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Hop-k Tests, k ≥ 2

• Just because two nodes do not have 3 or more independent

neighbours in common does not mean that they are not being

affected by a wormhole.

• Therefore if no wormhole is detected within a 1-hop

neighbourhood, we must examine the 2-hop neighbourhood and

determine how many 2-hop independent neighbours these

nodes have in common.

• Such tests depend on the density of the wireless network and

may not always be feasible. a

aDetecting wormhole attacks in wireless networks using connectivity informa-

tion R. Maheshwari, J. Gao, Samir Das, INFOCOM 2007
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Using Time Difference of Arrival

• The SND proposed in a requires that nodes are equipped with

microsecond precise clock (which is likely to be required in the

node anyways) and an ultrasonic (UF) transceiver, which is not

an especially expensive or power-consuming device.

• The algorithm proposed is localized to a 1-hop neighbourhood.

• It is assumed that all node share keys so that each node can

identify and authenticate itself.

aA Practical Secure Neighbor Verification Protocol for Wireless Sensor Net-

works Reza Shokri, Marcin Poturalski, Gael Ravot, Panos Papadimitratos, and

Jean-Pierre Hubaux Proceedings of the second ACM conference on Wireless net-

work security, 2009
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Neighbor Discovery (1/2)

• Each node (A) will broadcast a probe message (REQ).

• Neighbours of A will respond to this message and identify and

authenticate themselves.

• This stage is used to eliminate attacking nodes (but will not

prevent a wormhole attack).

ICDCN, Jan 3, 2012



Evangelos Kranakis, School of Computer Science, Carleton University, Ottawa 208

Neighbor Discovery (2/2)

• After a suitable amount of time, A will broadcast a UF

message and then begin sending messages to each verified

neighbour indicating the time of events as recorded by A

(tAREQ, t
A
REP , t

A
RNG) and encrypt this message specifically for

the recipient.

• Each message will contain different tAREP values depending on

when the response arrived from the specific neighbour. With

this information, the neighbours of A can estimate their

distance from A by the time difference of arrival. Since all the

neighbours of A will be doing the same, A will eventually have

an estimate for its distance to all its neighbours.

• Once it has all the estimates, it broadcasts its 1-hop

neighbourhood–including its distance estimates–to all its

neighbours.
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Three Tests: A Validates Link (A,B) for each Neighbor B

1. Symmetry: A confirms that d(A,B) = d(B,A).

2. Maximum Range Test: Assuming nodes know their range

R. If a neighbour lies beyond this range, the link must be

across a wormhole, so d(A,B) ≤ R

3. Quadrilateral Test: For any link (A,B) find two nodes D

and C, such that A, B, C, D form a 4-clique. If there is no

wormhole, then is should be possible to arrange all four nodes

so that they form a quadrilateral.
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Preventing Wormholes:

Directional Antenna Model
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Directional Sensors and Zones

• The range of an antenna is divided into n zones.

• Each zone has a conical radiation pattern, spanning an angle of

2π/n radians.

• The zones are fixed with non-overlapping beam directions, so

that the n zones may collectively cover the entire plane.

• When a node is idle, it listens to the carrier in omni mode.

• When it receives a message, it determines the zone on which

the received signal power is maximal. It then uses that zone to

communicate with the sender.
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Directional Sensors and Zones

The zones are numbered 1 to 6 oriented clockwise starting with

zone 1 facing east.

1
2

3
4

5 6

This orientation is established with respect to the earth’s meridian

regardless of a node’s physical orientation. This is achieved in

modern antennas with the aid of a magnetic needle that remains

collinear to the earth’s magnetic field. It ensures that a particular

zone always faces the same direction.
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Sending/Receiving

• Receiving:

a node can receive messages from any direction.

• Sending:

a node can work in omni or directional mode.

– In omni mode signals are received with a gain Go, while in

directional mode with a gain of Gd.

– Since a node in directional mode can transmit over a longer

distance, Gd > Go.
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Assumptions on Security

• All communication channels are bidirectional: if A can hear B,

then B can hear A.

A B

• A mechanism is available to establish secure links between all

pairs of nodes and that all critical messages are encrypted.

• Sensor network must be “relatively” dense.
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Notations

• A,B,C, . . .: Legitimate nodes

• X,Y : Wormhole endpoints

• R: Nonce

• EKAB(M): M encrypted with key shared by nodes A and B

• zone: The directional element, which ranges from 1 to 6.

• zone: The opposite directional element. For example, if

zone = 1 then zone = 4.

• zone(A,B): Zone in which node A hears node B

• neighbors(A, zone): Nodes within one (directional distance)

hop in direction zone of node A.
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Protocols
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Protocol 1: Directional Neighbor Discovery

• 1. A→ Region: HELLO and IDA.

• 2. N → A : IDN |EKNA(IDA|R|zone(N,A)).

All nodes that hear the HELLO message send their node ID

and an encrypted message to the announcer. The encrypted

message contains the announcer’s ID, a random challenge

nonce, and the zone in which the message was received.

• 3. A→ N : R.

A decrypts message and verifies that it contains its node ID. It

verifies zone(A,N) = zone(N,A). If correct, it adds the

sending neighbor to its neighbor set for zone(A,N). If message

was not received in the appropriate zone, it is ignored.

Otherwise, the announcer transmits the decrypted challenge

nonce to the sending neighbor. Upon receiving the correct

nonce, the neighbor inserts the announcer into its neighbor set.
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Wormhole Vulnerability of Protocol 1

An attacker with a wormhole can establish a false distant neighbor.

B

Region I Region II

YX

A

C
23

4

5 6

11

23

4

5 6

The adversary establishes a wormhole between X and Y , and can

trick A and C into accepting each other as neighbors by forwarding

messages since they are in opposite zones relative to the respective

wormhole endpoints.
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Further Problems with Protocol 1

B will hear A and C from the west through the wormhole

(zone(B,A) = zone(B,C) = 4), and C will hear A directly from

the east (zone(A,C) = zone(C,A) = 1) and C will hear B from the

west through the wormhole (zone(C,B) = zone(B,C) = 4).

B

Region I Region II

YX 1

23

4

5 6

1

23

4

5 6

D

A

C
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Mitigating Wormhole Attacks

If nodes cooperate with their neighbors they can prevent

wormholes since the attacker will only be able to convince nodes in

particular regions that they are neighbors.

Assume the adversary has one transceiver at each end of the

wormhole.

An adversary can only trick nodes that are in opposite directions

from the wormhole endpoints into accepting each other as

neighbors.

Hence, nodes in other locations can establish the announcer’s

legitimacy.

Such nodes are called verifiers.
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Introducing Verifiers

How do we prevent verifiers from acting through the wormhole?

Node C cannot act as a verifier for the link AB since the wormhole

attacker could make a node appear on the other end of the

wormhole.

Node D could act as a verifier, since it satisfies the verifier

properties.

B

Region I Region II

YX 1

23

4

5 6

1

23

4

5 6

D

A

C
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Verifiers

A valid verifier V for the link A↔ B must satisfy the following

properties:

1. zone(B,A) 6= zone(B, V ).

Node B hears V in a different zone from node A, hence it

knows A and V are in different locations, and both cannot be

coming through a single wormhole endpoint.

2. zone(B,A) 6= zone(V,A).

Node B and V hear node A from different directions. A

wormhole can deceive nodes in only one direction. So if both B

and V are directionally consistent with A in different directions

(zone(B,A) = zone(A,B) and zone (V,A) = zone(A, V )), then

they know A is not being retransmitted through a wormhole.
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Protocol 2: Verified Neighbor Discovery

First three steps 1-3 are exactly as in Protocol 1.

• 4. N → Region: INQUIRY |IDN |IDA|zone(N,A)

All neighbor nodes that hear the HELLO message broadcast an

inquiry in directions except for the received direction and

opposite direction.

So, if N received the announcement in zone 1, it will send

inquiries to find verifiers to zones 2, 3, 5 and 6.

The message includes zone(N,A), so prospective verifiers can

determine if they satisfy the verification properties by having

heard A in a different zone.
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Protocol 2: Verified Neighbor Discovery

• 5. V → N : IDV |EKNV (IDA|zone(V,N))

Nodes that receive the inquiry and satisfy the verification

properties respond with an encrypted message.

This message confirms that the verifier heard the

announcement in a different zone from N and has completed

steps 1-3 for the protocol to authenticate A and its relative

position.

To continue the protocol, N must receive at least one verifier

response. If it does, it accepts A as a neighbor, and sends a

message to A:

• 6. N → A: IDN |EKAN (IDA|ACCEPT )

After receiving the acceptance messages, the announcer adds N

to its neighbor set.
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Verifier Region

The shaded area is the verifier region of nodes A and B in verified

neighbor discovery protocol.

BA

If there is a node in the shaded region, it can act as a verifier for A

and B.
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And Now the Density!

• Now you can see why you need the sensor network to be dense.

• It is required that with high probability there is a verifier node

in the shaded region so as to enable A and B to have a

successful protocol verification.

• The shaded region determines a given a area. The probability

must be sufficiently high that sensors lie within this region so

as to act as verifiers!

• The verifier region may still exist when two nodes are slightly

out of radio range, and a smart adversary can use this to make

them to be neighbors.
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Worawannotai Attack: Wormhole Vulnerability of Protocol 2

Node B is located just beyond the transmission range of node A.

A B

V

X

If there is a valid verifier in those areas, the attacker can just put

one node in between A and B (node X) and use it to listen to and

retransmit messages between A and B.

Nodes A and B will mistakenly confirm they are neighbors using

verifier V , but the attacker will have control over all messages

between A and B.
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Preventing the Worawannotai Attack

There are two areas (a, b) that could have valid verifier for this

protocol. If there is a valid verifier in those areas, the attacker can

just put one node in between A and B (node X) and use it to

listen to and retransmit messages between A and B.

A B

V

X

a

b

A and B mistakenly confirm they are neighbors using verifier V ,

but the attacker will have control over all messages between A and

B.
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Protocol 3: Strict Verification Rules

In the strict protocol, a valid verifier V for the link A↔ B must

satisfy three properties:

1. zone(B,A) 6= zone(B, V ).

2. zone(B,A) 6= zone(V,A).

3. zone(B, V ) cannot be both adjacent to zone(B,A) and

adjacent to zone(V,A).

The first two conditions are the same as previous protocol, and

they guarantee that the adversary cannot replay the confirmation

message from verifiers. The third condition ensures that the verifier

region is empty when two nodes are out of radio range, so the

adversary cannot use this to conduct Worawannotai attack.

ICDCN, Jan 3, 2012



Evangelos Kranakis, School of Computer Science, Carleton University, Ottawa 230

Protocol 3: Strict Neighbor Discovery

The verifier region determined by the previous three rules is

depicted by the four regions a, b, c, d.

A B

V

X

a b

c d

These areas are the verifier region’s of node A and B in strict

neighbor discovery protocol
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Some Ideas

on Coverage and Routing

ICDCN, Jan 3, 2012



Evangelos Kranakis, School of Computer Science, Carleton University, Ottawa 232

Outline

• Coverage

– Static case

– Dynamic case

• Routing

– Stretch factor
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Coverage: Static Case
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Outline

• How do you replace omnidirectional antennae with directional

antennae?

• What are the range/angle/coverage tradeoffs?
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From Omnidirectional to Directional Antennae (1/4)

• Should we consider two points at a time?

• What is the appropriate range for directional antennae?

u

I

v

J

φ/2

K

• Distance and Angle Matter!
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Omnidirectional to Directional (2/4)

• Should we consider two points at a time?

• What is the appropriate range for directional antennae?

u

I

v

J

K

• Distance and Angle Matter!
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Omnidirectional to Directional (3/4)

• Should we consider three points at a time?

• What is the appropriate range for directional antennae?

u w

v

B

C

E

2π
3

I

J

K

u+

u-

v+

v-
w+

w-

A

2π
3

2π
3

• Distance and Angle Matter!

ICDCN, Jan 3, 2012



Evangelos Kranakis, School of Computer Science, Carleton University, Ottawa 238

Omnidirectional to Directional (4/4)

• Should we consider four points at a time?

• What is the appropriate range for directional antennae?

(a) (b)

A D

C
B

A D

C

B

• Distance and Angle Matter!
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Coverage: Dynamic Case
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Outline

• Antennae themselves may rotate

• Antennae rotate at a constant speed

• How do you cover a given domain under continuous rotation?
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On a Line

• n directional antennae on a line rotate at constant identical

speeds

• What are the angle/range tradeoffs?
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Two Directional Antennae

• 2 antennae rotate at constant identical speeds

• What is the min angle required to cover the whole plane?
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Three Directional Antennae

• 3 antennae rotate at constant identical speeds

p

q

r

• What is the min angle required to cover the whole plane?
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Four Directional Antennae

• 4 antennae rotate at constant identical speeds

• What is the min angle required to cover the whole plane?
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Antennae in Convex Position

• n antennae (in convex position) rotate at constant identical

speeds

• What is the min angle required to cover the whole plane?
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Routing
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Graphs of Directional Antennae

• Consider a set P of n points in the plane and assume that the

Unit Disk Graph U := U(P, 1) (with radius 1) is connected.

• Consider (φ, r)-directional antennae of angle φ and radius r ≥ 1

and assume that k such antenna can be placed per point p ∈ P ,

for some k ≥ 1.

• Let G(k, φ, r) be the class of all possible directed strongly

connected graphs arising under all possible rotations of the

antennae.

• Note that G(k, φ, r) may be empty for a given integer k ≥ 1,

angle φ and radius r.

• Similarly, since there is always a MST of max degree at most 5

on the set P of points it is easy to see that G(5, 0, 1) 6= ∅.
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Connectivity Range: Problem

• Given angle φ the connectivity range r(φ) is the smallest radius

r > 0 such that there is an orientation of (φ, r)-antennae on the

set P of points which results in a strongly connected graph, i.e.,

r(k, φ) := min{r > 0 : G(k, φ, r) 6= ∅}.

• An algorithm A which rotates the antennae so that the

resulting graph is strongly connected produces a graph, say

GA, such that GA ∈ G(k, φ, r), for some r ≥ 1.

• Let rA(k, φ) be the radius of the antennae used in GA.
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Connectivity Range

• Consider the class A(k, φ, P ) of all such orientation algorithms

on the set P of points above.

Problem 1 We are given a set P of n points in the plane such

that the Unit Disk Graph U := U(P, 1) is connected. Let φ ≥ 0

be any angle and k ≥ 1 an integer.

1. Give an algorithm A ∈ A(k, φ, P ) for orienting the antennae

and which achieves the optimal range r(k, φ) for antennae

of angle φ.

2. If there is no algorithm attaining the optimal range, then

give an algorithm A ∈ A(k, φ, P ) which attains the best

approximation to r(k, φ).
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(Hop) stretch factor

• For any graph G on the set P of points and any two points

s, t ∈ P let dG(s, t) denote the (hop) distance between s and t.

• The (φ, r)-antenna (hop) stretch factor of a graph

G ∈ G(k, φ, r) is defined by

σG(φ, r) := max

{
dG(s, t)

dU (s, t)
: s 6= t

}
,

where dU (s, t) is the hop distance between s, t in the graph U .

• The (φ, r)-antenna (hop) stretch factor for k antennae per

point is defined by

σ(k, φ, r) := min {σG(φ, r) : G ∈ G(k, φ, r)}
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(Hop) stretch factor

• Clearly, σ(k, φ, r) = +∞ when G(k, φ, r) = ∅. The φ-antenna

(hop) stretch factor for k antennae per point is defined by

σ(k, φ) := min{σ(k, φ, r) : G(k, φ, r) 6= ∅, for some r ≥ 1}

= min
G∈G(k,φ,r)

max
s6=t

dG(s, t)

dU (s, t)

• An algorithm A which rotates the antennae so that the

resulting graph is strongly connected produces a graph, say

GA, such that GA ∈ G(k, φ, r), for some r ≥ 1.

• Let dA(s, t) be the hop-distance between s, t in the graph GA.
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(Hop) stretch factor

• The stretch factor of algorithm A is defined by

σA(φ) := max
s6=t

dA(s, t)

dU (s, t)
.

• Problem 2 We are given a set P of n points in the plane such

that the Unit Disk Graph U := U(P, 1) is connected. Let φ be

an angle and k ≥ 1 an integer.

1. Give an algorithm A ∈ A(k, φ, P ) for orienting the antennae

and which achieves the optimal stretch factor for antennae

of angle φ.

2. If there is no algorithm attaining the optimal stretch factor,

then give an algorithm A ∈ A(k, φ, P ) which attains the best

approximation to σ(k, φ).
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